A longstanding challenge of shared-memory concurrency is to provide a memory model that allows for efficient implementation while providing strong and simple guarantees to programmers. The C++0x and Java memory models admit a wide variety of compiler and hardware optimizations and provide sequentially consistent (SC) semantics for data-race-free programs. However, they either do not provide any semantics (C++0x) or provide a hard-tounderstand semantics (Java) for racy programs, compromising the safety and debuggability of such programs.In earlier work we proposed the DRFx memory model, which addresses this problem by dynamically detecting potential violations of SC due to the interaction of compiler or hardware optimizations with data races and halting execution upon detection. In this paper, we present a detailed micro-architecture design for supporting the DRFx memory model, formalize the design and prove its correctness, and evaluate the design using a hardware simulator. We describe a set of DRFx-compliant complexity-effective optimizations which allow us to attain performance close to that of TSO (Total Store Model) and DRF0 while providing strong guarantees for all programs.
A longstanding challenge of shared-memory concurrency is to provide a memory model that allows for efficient implementation while providing strong and simple guarantees to programmers. The C++0x and Java memory models admit a wide variety of compiler and hardware optimizations and provide sequentially consistent (SC) semantics for data-race-free programs. However, they either do not provide any semantics (C++0x) or provide a hard-tounderstand semantics (Java) for racy programs, compromising the safety and debuggability of such programs. In earlier work we proposed the DRFx memory model, which addresses this problem by dynamically detecting potential violations of SC due to the interaction of compiler or hardware optimizations with data races and halting execution upon detection. In this paper, we present a detailed micro-architecture design for supporting the DRFx memory model, formalize the design and prove its correctness, and evaluate the design using a hardware simulator. We describe a set of DRFx-compliant complexity-effective optimizations which allow us to attain performance close to that of TSO (Total Store Model) and DRF0 while providing strong guarantees for all programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.