BackgroundMorbidity estimates between different GP registration networks show large, unexplained variations. This research explores the potential of modeling differences between networks in distinguishing new (incident) cases from existing (prevalent) cases in obtaining more reliable estimates.MethodsData from five Dutch GP registration networks and data on four chronic diseases (chronic obstructive pulmonary disease [COPD], diabetes, heart failure, and osteoarthritis of the knee) were used. A joint model (DisMod model) was fitted using all information on morbidity (incidence and prevalence) and mortality in each network, including a factor for misclassification of prevalent cases as incident cases.ResultsThe observed estimates vary considerably between networks. Using disease modeling including a misclassification term improved the consistency between prevalence and incidence rates, but did not systematically decrease the variation between networks. Osteoarthritis of the knee showed large modeled misclassifications, especially in episode of care-based registries.ConclusionRegistries that code episodes of care rather than disease generally provide lower estimates of the prevalence of chronic diseases requiring low levels of health care such as osteoarthritis. For other diseases, modeling misclassification rates does not systematically decrease the variation between registration networks. Using disease modeling provides insight in the reliability of estimates.
BackgroundEstimates of disease incidence and prevalence are core indicators of public health. The manner in which these indicators stand out against each other provide guidance as to which diseases are most common and what health problems deserve priority. Our aim was to investigate how routinely collected data from different general practitioner registration networks (GPRNs) can be combined to estimate incidence and prevalence of chronic diseases and to explore the role of uncertainty when comparing diseases.MethodsIncidence and prevalence counts, specified by gender and age, of 18 chronic diseases from 5 GPRNs in the Netherlands from the year 2007 were used as input. Generalized linear mixed models were fitted with the GPRN identifier acting as random intercept, and age and gender as explanatory variables. Using predictions of the regression models we estimated the incidence and prevalence for 18 chronic diseases and calculated a stochastic ranking of diseases in terms of incidence and prevalence per 1,000.ResultsIncidence was highest for coronary heart disease and prevalence was highest for diabetes if we looked at the point estimates. The between GPRN variance in general was higher for incidence than for prevalence. Since uncertainty intervals were wide for some diseases and overlapped, the ranking of diseases was subject to uncertainty. For incidence shifts in rank of up to twelve positions were observed. For prevalence, most diseases shifted maximally three or four places in rank.ConclusionEstimates of incidence and prevalence can be obtained by combining data from GPRNs. Uncertainty in the estimates of absolute figures may lead to different rankings of diseases and, hence, should be taken into consideration when comparing disease incidences and prevalences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.