<div>
<div>
<p>Herein, we describe the application of Lewis acid-catalyzed
carbonyl-olefin metathesis towards the synthesis of chiral, substituted
tetrahydropyridines from commercially available amino acids as chiral pool
reagents. This strategy relies on FeCl<sub>3</sub> as an inexpensive and
environmentally benign catalyst and enables access to a variety of substituted
tetrahydropyridines under mild reaction conditions. The reaction proceeds with
complete stereoretention and is viable for a variety of natural and unnatural
amino acids to provide the corresponding tetrahydropyridines in up to 99% yield.</p>
</div>
</div>
<br>
Herein we describe the application of Lewis-acidcatalyzed carbonyl−olefin metathesis toward the synthesis of substituted tetrahydropyridines from commercially available amino acids as chiral pool reagents. This strategy relies on FeCl 3 as an inexpensive and environmentally benign catalyst and enables access to a variety of substituted tetrahydropyridines under mild reaction conditions. The reaction proceeds with complete stereoretention and is viable for a variety of natural and unnatural amino acids to provide the corresponding tetrahydropyridines in up to 99% yield.Letter pubs.acs.org/OrgLett
The design of concise and efficient synthetic strategies to access naturally occurring, pharmaceutically active complex molecules is of utmost importance in current chemistry. It not only enables rapid access to these molecules and their analogues but also provides sufficient quantities for their biological evaluation. Identification of any symmetric or pseudosymmetric synthetic intermediates upon retrosynthetic bond disconnection of the target molecule holds the promise to significantly streamline the route towards the compound of interest. This review will highlight recent examples of successful natural product syntheses reported within the past five years that benefited from the recognition of symmetry elements during the retrosynthetic design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.