Abstract. The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Abstract. A new global high-resolution coupled climate model, EC-Earth3P-HR has been developed by the EC-Earth consortium, with a resolution of approximately 40 km for the atmosphere and 0.25∘ for the ocean, alongside with a standard-resolution version of the model, EC-Earth3P (80 km atmosphere, 1.0∘ ocean). The model forcing and simulations follow the High Resolution Model Intercomparison Project (HighResMIP) protocol. According to this protocol, all simulations are made with both high and standard resolutions. The model has been optimized with respect to scalability, performance, data storage and post-processing. In accordance with the HighResMIP protocol, no specific tuning for the high-resolution version has been applied. Increasing horizontal resolution does not result in a general reduction of biases and overall improvement of the variability, and deteriorating impacts can be detected for specific regions and phenomena such as some Euro-Atlantic weather regimes, whereas others such as the El Niño–Southern Oscillation show a clear improvement in their spatial structure. The omission of specific tuning might be responsible for this. The shortness of the spin-up, as prescribed by the HighResMIP protocol, prevented the model from reaching equilibrium. The trend in the control and historical simulations, however, appeared to be similar, resulting in a warming trend, obtained by subtracting the control from the historical simulation, close to the observational one.
Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Abstract. A new global high-resolution coupled climate model, EC-Earth3P-HR has been developed by the EC-Earth consortium, with a resolution of approximately 40 km for the atmosphere and 0.25 degree for the ocean, alongside with a standard resolution version of the model, EC-Earth3P (80 km atmosphere, 1.0 degree ocean). The model forcing and simulations follow the HighResMIP protocol. According to this protocol all simulations are made with both high and standard resolutions. The model has been optimized with respect to scalability, performance, data-storage and post-processing. In accordance with the HighResMIP protocol no specific tuning for the high resolution version has been applied. Increasing horizontal resolution does not result in a general reduction of biases and overall improvement of the variability, and deteriorating impacts can be detected for specific regions and phenomena such as some Euro-Atlantic weather regimes, whereas others such as El Niño-Southern Oscillation show a clear improvement in their spatial structure. The omission of specific tuning might be responsible for this. The shortness of the spin-up, as prescribed by the HighResMIP protocol, prevented the model to reach equilibrium. The trend in the control and historical simulations, however, appeared to be similar, resulting in a warming trend, obtained by subtracting the control from the historical simulation, close to the observational one.
Abstract. Mixed-precision approaches can provide substantial speed-ups for both computing- and memory-bound codes with little effort. Most scientific codes have overengineered the numerical precision, leading to a situation in which models are using more resources than required without knowing where they are required and where they are not. Consequently, it is possible to improve computational performance by establishing a more appropriate choice of precision. The only input that is needed is a method to determine which real variables can be represented with fewer bits without affecting the accuracy of the results. This paper presents a novel method that enables modern and legacy codes to benefit from a reduction of the precision of certain variables without sacrificing accuracy. It consists of a simple idea: we reduce the precision of a group of variables and measure how it affects the outputs. Then we can evaluate the level of precision that they truly need. Modifying and recompiling the code for each case that has to be evaluated would require a prohibitive amount of effort. Instead, the method presented in this paper relies on the use of a tool called a reduced-precision emulator (RPE) that can significantly streamline the process. Using the RPE and a list of parameters containing the precisions that will be used for each real variable in the code, it is possible within a single binary to emulate the effect on the outputs of a specific choice of precision. When we are able to emulate the effects of reduced precision, we can proceed with the design of the tests that will give us knowledge of the sensitivity of the model variables regarding their numerical precision. The number of possible combinations is prohibitively large and therefore impossible to explore. The alternative of performing a screening of the variables individually can provide certain insight about the required precision of variables, but, on the other hand, other complex interactions that involve several variables may remain hidden. Instead, we use a divide-and-conquer algorithm that identifies the parts that require high precision and establishes a set of variables that can handle reduced precision. This method has been tested using two state-of-the-art ocean models, the Nucleus for European Modelling of the Ocean (NEMO) and the Regional Ocean Modeling System (ROMS), with very promising results. Obtaining this information is crucial to build an actual mixed-precision version of the code in the next phase that will bring the promised performance benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.