In this article, we have responded to the key statements in the article by Koivisto et al. (2022) that were incorrect and considered to be a biased critique on a subset of the exposure models used in Europe (i.e. ART and Stoffenmanager®) used for regulatory exposure assessment. We welcome scientific discussions on exposure modelling (as was done during the ISES Europe workshop) and criticism based on scientific evidence to contribute to the advancement of occupational exposure estimation tools. The tiered approach to risk assessment allows various exposure assessment models from screening tools (control/hazard banding) through to higher-tiered approaches. There is a place for every type of model, but we do need to recognize the cost and data requirements of highly bespoke assessments. That is why model developers have taken pragmatic approaches to develop tools for exposure assessments based on imperfect data. We encourage Koivisto et al. to focus on further scientifically robust work to develop mass-balance models and by independent external validations studies, compare these models with alternative model tools such as ART and Stoffenmanager®.
Nach der Gefahrstoffverordnung (GefStoffV) muss das Unternehmen bei Tätigkeiten mit Gefahrstoffen eine Gefährdungsbeurteilung durchführen. Hierbei sollen Gefährdungen ermittelt und bewertet werden, um geeignete Schutzmaßnahmen für die Beschäftigten festzulegen. Zusätzlich verpflichtet die GefStoffV auch zur Führung eines Gefahrstoffverzeichnisses und eines Expositionsverzeichnisses von Beschäftigten, die gegenüber krebserzeugenden oder keimzellmutagenen Stoffen exponiert sind. Die Ergebnisse der Gefährdungsbeurteilung müssen dokumentiert und die Beschäftigten über die Ergebnisse unterwiesen werden. Detaillierte Informationen zur Umsetzung der Pflichten bei der Gefährdungsbeurteilung finden sich in den Technischen Regeln für Gefahrstoffe. Das Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), einzelne Unfallversicherungsträger sowie die Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) bieten Unternehmen unterschiedliche digitale Tools als Hilfestellungen für die Gefährdungsbeurteilung bei Tätigkeiten mit Gefahrstoffen an. Im ersten Themenheft „Digitale Tools“ der Gefahrstoffe – Reinhaltung der Luft 7-8/2021 wurden bereits einige Instrumente ausführlicher vorgestellt [1]. Weitere, in diesem Artikel genannte Tools zur Unterstützung bei der Gefährdungsbeurteilung werden in dieser Ausgabe präsentiert.
Stoffenmanager® is a well-established and widely accepted tool that is applied for regulatory risk assessments (e.g. REACH). This online-tool enables companies to identify hazardous chemicals, chemical risks and to control exposure to hazardous substances at the workplace. In the current version, however, Stoffenmanager® is not applicable to all areas of activity with solids in which dusty hazardous substances are used or may arise. Therefore, the aim of this project is to expand the applicability domain of Stoffenmanager® by developing three innovative algorithms: 1) respirable dust and quartz for tasks with dusty products, 2) respirable dust for metal-cutting manufacturing and 3) respirable dust and quartz for the mechanical processing of stone. To derive new quantitative regression models calibration and validation measurement datasets on hazardous substances are required. In this project, a total of approximately 6000 data points including comprehensive contextual information were extracted from the IFA Exposure database MEGA and MEGA variables were converted into Stoffenmanager® variables. Subsequently, the variables were divided into classes with scores on a logarithmic scale. Spearman correlation coefficients were calculated, and in case of significant positive relationship between the Stoffenmanager® scores and the measurements statistical regression analyses were performed to calculate the regression equations. After the development of the new algorithms, exposure models were validated against exposure data from the MEGA database. Scatter plots and regression equations will be presented. The new algorithms serve to improve workers’ health by reducing occupational exposure to respirable dust and quartz which are known to be human carcinogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.