Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.
1. Edaphic factors and initial conditions can regulate the speed of forest succession.Edaphic factors, which include soil chemistry and topography, determine soil resource availability and can filter species as forests mature. Initial plant cover early in succession can determine the rates at which secondary forests change in structure, richness, biomass and composition over time. While some of the effects of edaphic factors and initial conditions on forest succession have been studied, how they simultaneously modify young regenerating tropical forest has rarely been examined.2. We surveyed 22 young forests plots in Panama for 7 years (11, 6 and 3-yearold stands when censuses began). We study how tree and liana species composition change early in succession, as well as how edaphic factors (soil nutrients and topography) and initial conditions (initial basal area and forest canopy cover) influence changes in tree and liana abundance, species richness, biomass and composition throughout succession.3. We found that edaphic factors and initial conditions explained up to 45% of the variation in the successional trajectories for trees and lianas. Soil nutrients had a significant positive effect on the changes in tree biomass accretion, while topography significantly contributed to community similarity of large lianas over time. Initial basal area had a significant negative effect on the changes in sapling abundance and tree richness over time and a positive marginal effect on tree biomass accretion. Forest canopy cover only had a positive marginal effect on changes in sapling abundance.4. Tree abundance, biomass and richness increased over time, while sapling abundance, biomass and richness remained stable or decreased, probably due to community thinning. However, changes over time of small and large lianas diverged, probably due to differential resource availability that affected lianas but not trees. 5.Synthesis. Soil fertility, topography and initial basal area influence early forest regeneration. Higher soil fertility can allow trees to fix carbon faster, and lianas might | 161Journal of Ecology ESTRADA-VILLEGAS ET AL.
Grasses and fire pose a major challenge for forest restoration. Here we evaluate a case study of reforestation in an area invaded by the tall invasive grass Saccharum spontaneum in the Panama Canal Watershed. The project objectives were to (1) replace Saccharum with a forest, (2) restore a stratified mixed species forest and (3) sequester carbon. We aimed to compare the practice of forest restoration with a treatment grounded in theory. Therefore, the first species selection method followed business-as-usual: contractors planted any combination of 130 prescribed species. The second method followed the framework species approach, a mixture of 22 species was planted to ensure early shade, create a stratified forest over time, attract seed dispersers, and for their potential to fix N 2. Both treatments showed successful restoration trajectories 8.5 years after planting, they did not differ in structural characteristics (stem density, basal area, aboveground biomass, height, and amount of Saccharum). However, based on the species present, the framework approach shows more potential to become a stratified forest. As the framework approach also withstood fires much better than the business-as-usual approach, we conclude that it improves restoration success in this human-dominated landscape.
Predicting forest recovery at landscape scales will aid forest restoration efforts.The first step in successful forest recovery is tree recruitment. Forecasts of tree recruit abundance, derived from the landscape-scale distribution of seed sources (i.e., adult trees), could assist efforts to identify sites with high potential for natural regeneration. However, previous work revealed wide variation in the effect of seed sources on seedling abundance, from positive to no effect. We quantified the relationship between adult tree seed sources and tree recruits and predicted where natural recruitment would occur in a fragmented, tropical, agricultural landscape.We integrated species-specific tree crown maps generated from hyperspectral imagery and property ownership data with field data on the spatial distribution of tree recruits from five species. We then developed hierarchical Bayesian models to predict landscape-scale recruit abundance. Our models revealed that speciesspecific maps of tree crowns improved recruit abundance predictions. Conspecific crown area had a much stronger impact on recruitment abundance (8.00% increase in recruit abundance when conspecific tree density increases from zero to one tree; 95% credible interval (CI): 0.80% to 11.57%) than heterospecific crown area (0.03% increase with the addition of a single heterospecific tree, 95% CI: À0.60% to 0.68%). Individual property ownership was also an important predictor of recruit abundance: The best performing model had varying effects of conspecific and heterospecific crown area on recruit abundance, depending on individual property ownership. We demonstrate how novel remote sensing approaches and cadastral data can be used to generate high-resolution and landscape-level maps of tree recruit abundance. Spatial models parameterized with field, cadastral, and remote sensing data are poised to assist decision support for forest landscape restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.