Studies in rodent brain slices suggest that seizures in focal epilepsies are sustained and propagated by the reciprocal interaction between neurons and astroglial cells
Key points In focal epilepsy the propagation of seizure discharges arising at restricted brain sites is opposed by feedforward inhibition. Failure of this inhibition marks focal seizure propagation to distant neurons. The cellular source of inhibition and the mechanism of inhibition failure are, however, undefined. Here we reveal that a subclass of GABAergic interneurons, i.e. the parvalbumin‐expressing, fast‐spiking interneurons, are a main source of the inhibitory signal that locally restrains seizures. Furthermore, a firing impairment in these interneurons, probably due to a drastic membrane depolarization, is an important event that by reducing the overall strength of local inhibition allows seizures to propagate across the cortex. Our data suggest that modulation of fast‐spiking interneuron activity may represent a new therapeutic strategy to prevent generalization of focal epilepsies. Abstract In different animal models of focal epilepsy, seizure‐like ictal discharge propagation is transiently opposed by feedforward inhibition. The specific cellular source of this signal and the mechanism by which inhibition ultimately becomes ineffective are, however, undefined. We used a brain slice model to study how focal ictal discharges that were repetitively evoked from the same site, and at precise times, propagate across the cortex. We used Ca2+ imaging and simultaneous single/dual cell recordings from pyramidal neurons (PyNs) and different classes of interneurons in rodents, including G42 and GIN transgenic mice expressing the green fluorescence protein in parvalbumin (Pv)‐fast spiking (FS) and somatostatin (Som) interneurons, respectively. We found that these two classes of interneurons fired intensively shortly after ictal discharge generation at the focus. The inhibitory barrages that were recorded in PyNs occurred in coincidence with Pv‐FS, but not with Som interneuron burst discharges. Furthermore, the strength of inhibitory barrages increased or decreased in parallel with increased or decreased firing in Pv‐FS interneurons but not in Som interneurons. A firing impairment of Pv‐FS interneurons caused by a membrane depolarization was found to precede ictal discharge onset in neighbouring pyramidal neurons. This event may account for the collapse of local inhibition that allows spatially defined clusters of PyNs to be recruited into propagating ictal discharges. Our study demonstrates that Pv‐FS interneurons are a major source of the inhibitory barrages that oppose ictal discharge propagation and raises the possibility that targeting Pv‐FS interneurons represents a new therapeutic strategy to prevent the generalization of human focal seizures.
Parvalbumin (Pv)-positive inhibitory interneurons effectively control network excitability, and their optogenetic activation has been reported to block epileptic seizures. An intense activity in GABAergic interneurons, including Pv interneurons, before seizures has been described in different experimental models of epilepsy, raising the hypothesis that an increased GABAergic inhibitory signal may, under certain conditions, initiate seizures. It is therefore unclear whether the activity of Pv interneurons enhances or opposes epileptiform activities. Here we use a mouse cortical slice model of focal epilepsy in which the epileptogenic focus can be identified and the role of Pv interneurons in the generation and propagation of seizure-like ictal events is accurately analyzed by a combination of optogenetic, electrophysiological, and imaging techniques. We found that a selective activation of Pv interneurons at the focus failed to block ictal generation and induced postinhibitory rebound spiking in pyramidal neurons, enhancing neuronal synchrony and promoting ictal generation. In contrast, a selective activation of Pv interneurons distant from the focus blocked ictal propagation and shortened ictal duration at the focus. We revealed that the reduced ictal duration was a direct consequence of the ictal propagation block, probably by preventing newly generated afterdischarges to travel backwards to the original focus of ictal initiation. Similar results were obtained upon individual Pv interneuron activation by intracellular depolarizing current pulses. The functional dichotomy of Pv interneurons here described opens new perspectives to our understanding of how local inhibitory circuits govern generation and spread of focal epileptiform activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.