The Eastern Nile Basin is facing a number of transboundary issues, including water resources development, and the associated impacts. The Nile Basin, particularly the Eastern Nile Sub-basin, is considered as one of a few international river systems of potential conflicts between riparian countries. The Eastern Nile is characterized by the high dependency of downstream countries on river water generated in upstream countries, with limited or no contribution to the runoff itself. The aim of this paper is to analyze optimal scenarios for water resources management in the Eastern Nile with regard to hydropower generation and irrigation development. A hydro-economic optimization model based on Genetic Algorithm has been used to determine the maximum benefits for two scenarios: (i) non-cooperative management of hydraulic infrastructure by the riparian countries (status quo), and (ii) cooperative water resources management among the riparian countries. The hydro-economic model is developed using a Genetic Algorithm and deterministic optimization approach covering all hydraulic infrastructures in the Eastern Nile, existing and planned, including the Grand Ethiopian Renaissance Dam (GERD). The results show that cooperative management yields an increase in hydro-energy returns for all countries compared to the status quo, with a very high increase in Ethiopian’s returns, as expected. Non-cooperative system management would negatively impact the hydro-energy of Egypt compared to the cooperative management (reduced by 11%), without a significant increase of hydro-energy for Ethiopia. For Sudan, the results show that hydropower generation benefits from the presence of GERD, in both management scenarios. Non-cooperative management of the system, along with the internal trade-off between irrigation and hydropower facilities, would negatively impact irrigation supply in Sudan. The findings support the argument of positive impact of GERD development on the three Eastern Nile riparian countries, Ethiopia, Sudan and Egypt, provided that the three countries agree to manage the system cooperatively.
The paper presents the results of the Battle of Post-Disaster Response and Restoration (BPDRR), presented in a special session at the 1 st International WDSA/CCWI Joint Conference, held in Kingston, Ontario, in July 2018. The BPDRR problem focused on how to respond and restore water service after the occurrence of five earthquake scenarios that cause structural damage in a water distribution system. Participants were required to propose a prioritization schedule to fix the damages of each scenario while following restrictions on visibility/non visibility of damages. Each team/approach was evaluated against six performance criteria that included: 1) Time without supply for hospital/firefighting, 2) Rapidity of recovery, 3) Resilience loss, 4) Average time of no user service, 5) Number of users without service for 8 consecutive hours, and 6) Water loss. Three main types of approaches were identified from the submissions: 1) General purpose metaheuristic algorithms, 2) Greedy algorithms, and 3) Ranking-based prioritizations. All three approaches showed potential to solve the challenge efficiently. The results of the participants showed that, for this network, the impact of a largediameter pipe failure on the network is more significant than several smaller pipes failures. The location of isolation valves and the size of hydraulic segments influenced the resilience of the system during emergencies. On average, the interruptions to water supply (hospitals and firefighting) varied considerably between solutions and emergency scenarios, highlighting the importance of private water storage for emergencies. The effects of damages and repair work were more noticeable during the peak demand periods (morning and noontime) than during the low-flow periods; and tank storage helped to preserve functionality of the network in the first few hours after a simulated event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.