Abstract. Standard metabolic rate is a major functional trait with large inter-individual variability in many groups of aquatic species. Here we present results of an experimental study to address variation in standard metabolic rates, over different scales of organisation and environments, within a specific group of aquatic macro-invertebrates (i.e. gammarid amphipods) that represent the primary consumers in detritus food webs. The study was carried out using flow-through microrespirometric techniques on male specimens of three gammarid species from freshwater, transitional water and marine ecosystems. We examined individual metabolic rate variations at three scales: (1) at the individual level, during an 8 h period of daylight; (2) at the within-population level, along body-size and body-condition gradients; (3) at the interspecific level, across species occurring in the field in the three different categories of aquatic ecosystems, from freshwater to marine. We show that standard metabolic rates vary significantly at all three scales examined, with the highest variation observed at the within-population level. Variation in individual standard metabolic rates during the daylight hours was generally low (coefficient of variation, CV<10 %) and unrelated to time. The average within-population CV ranged between 30.0 % and 35.0 %, with body size representing a significant source of overall inter-individual variation in the three species and individual body condition exerting only a marginal influence. In all species, the allometric equations were not as steep as would be expected from the 3∕4 power law, with significant variation in mass-specific metabolic rates among populations. The population from the transitional water ecosystem had the highest mass-specific metabolic rates and the lowest within-population variation. In the gammarid species studied here, body-size-independent variations in standard individual metabolic rates were higher than those explained by allometric body size scaling, and the costs of adaptation to short-term periodic variations in water salinity in the studied ecosystems also seemed to represent a major source of variation.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Individual energy requirements are tightly related to individual resource use and by extension of space‐use patterns and other traits at higher levels of the ecological hierarchy. However, there is still little experimental evidence linking individual energetics and space‐use behaviour. Individual energy requirements scale mainly with body size and temperature, but these do not explain all individual variation. Therefore, studies focused on inter individual variation in resource and space use behaviour can be used to frame foraging dynamics in an energy perspective. We empirically tested the hypothesis of a relationship between individual energetics and patch departure behaviour using as model organisms four small species (body mass ranging from 0.4 to 14 mg AFDW) of aquatic gastropods strongly differing in adult size: Galba truncatula, Bithynia tentaculata, Theodoxus fluviatilis and Ecrobia ventrosa (in descending order of size). Motility tests were performed in controlled microcosm conditions. The tests were designed to classify the specimens as either low motility (not inclined to abandon the patch) or high motility (likely to abandon the patch). The tests entailed measuring the propensity of the individuals to abandon a limited resource patch (2 g DW of conditioned Phragmites australis leaves) within a given amount of time (24 h) when foraging with conspecifics under conditions where competition for food is expected to increase over time due to resource depletion. The individual standard metabolic rate of the tested specimens was measured via open flow respirometry and compared across motility classes at intra‐ and interspecific level. At both levels, we observed that individuals with higher standard metabolic rates were more inclined to abandon the patch. This finding establishes a link between foraging theory and competitive coexistence mechanisms.
This study is focused on investigating the variation patterns of macroinvertebrate guilds functional structure, in relation to the taxonomic one, across aquatic ecosystem types along the salinity gradient from freshwater to marine and the resulting implications on guild organization and energy flows. Synoptic samplings have been carried out using the leaf-pack technique at 30 sites of the aquatic ecosystems of the Corfu Island (Greece), including freshwater, lagoon, and marine sites. Here, we analyzed the macroinvertebrate guilds of river, lagoon, and marine ecosystems, as: i. taxonomic composition and population abundance ii. trophic guilds composition and relative abundance; and iii. body size spectra and size patterns. The following variation patterns across the three ecosystem types were observed: a. trophic guild composition and body size spectra were more conservative than taxonomic composition within and among ecosystem types, where, trophic guild and size spectra composition were more similar between river and lagoon ecosystem types than with marine ones; b. a dominance on resource exploitation of large species over smaller ones was inferred at all sites; and, c. higher body size-specific density of individuals was consistently observed in lagoon than in freshwater and marine ecosystems. Results extend previous findings suggesting a common hierarchical organization of benthic macroinvertebrate guilds in aquatic ecosystems and showing that lagoon ecosystems have higher energy density transferred to benthic macroinvertebrates than both freshwater and marine ecosystem types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.