The pressure-induced chemical reaction of liquid butadiene was studied by Fourier transform infrared spectroscopy in a diamond anvil cell. Dimerization was found to occur above 0.7 gigapascal, giving vinylcyclohexene according to a cyclo-addiction reaction and only a trace amount of polybutadiene forms. By irradiating the high-pressure sample with a few milliwatts of the 488-nanometer argon+ laser line, the dimerization was completely inhibited, and the rapid formation of pure trans-polybutadiene was observed. The use of different excitation wavelength allows us to emphasize the selectivity of the process and to identify the active role of the 2(1)Ag state in this pressure- and laser-induced chemical reaction.
Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.
In this work we have performed an extensive high pressure study of the condensed phases of pyridine by Raman and IR spectroscopy. We have evidenced three different polymorphs, two crystalline, and one glassy and established the pressure conditions in which they exist as stable or metastable phases by several compression/decompression experiments both on annealed and not annealed samples. Crystallization and phase transitions are found to be kinetically driven. The vibrational spectra are extremely complex due to the low symmetry of the crystals, which implies a large number of crystal components. This complexity required a careful analysis of both IR and Raman data that led to the identification of 20 out of 21 external modes expected for phase II. We did not find any conclusive indication of phase transitions on compressing phase II thus indicating that phase II is likely the stable phase at the onset pressure of the chemical transformation of pyridine. The latter starts at 18 GPa and relevant differences from the well characterized benzene reaction suggest that it is likely driven by crystal defects.
Angle dispersion X-ray diffraction (AXDX) experiments on nitromethane single crystals and powder were performed at room temperature as a function of pressure up to 19.0 and 27.3 GPa, respectively, in a membrane diamond anvil cell (MDAC). The atomic positions were refined at 1.1, 3.2, 7.6, 11.0, and 15.0 GPa using the single-crystal data, while the equation of state (EOS) was extended up to 27.3 GPa, which is close to the nitromethane decomposition threshold pressure at room temperature in static conditions. The crystal structure was found to be orthorhombic, space group P2(1)2(1)2(1), with four molecules per unit cell, up to the highest pressure. In contrast, the molecular geometry undergoes an important change consisting of a gradual blocking of the methyl group libration about the C-N bond axis, starting just above the melting pressure and completed only between 7.6 and 11.0 GPa. Above this pressure, the orientation of the methyl group is quasi-eclipsed with respect to the NO bonds. This conformation allows the buildup of networks of strong intermolecular O...H-C interactions mainly in the bc and ac planes, stabilizing the crystal structure. This structural evolution determines important modifications in the IR and Raman spectra, occurring around 10 GPa. Present measurements of the Raman and IR vibrational spectra as a function of pressure at different temperatures evidence the existence of a kinetic barrier for this internal rearrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.