The geomorphoclimatic instantaneous unit Hydrograph theory, the joint probability density function of storm duration and intensity, and Philip's representation of the infiltration process are used to derive a flood frequency distribution that could be used in regions with no streamflow records. The resulting flood frequency distribution is in analytical form containing only few climatologic and physiographic parameters of the catchment. This frequency distribution was tested against frequency distributions calculated from historic records for arid and wet climates, with good and reasonable results, respectively.
Green roofs (GRs) are a feasible solution for mitigating increased runoff volumes in urban areas. Though many studies have focused their analysis on the quantity and quality of GR runoff, with respect to the relevance of specific site conditions in GR performance, the information gathered for the tropical Andes is not sufficient. This study assessed the hydrological performance and runoff water quality of 12 green roof modular systems located at the Universidad de los Andes campus (Bogotá, Colombia). Based on 223 rainfall events spanning a 3-year period, average rainfall retention was 85% (coefficient of variation = 29%). t-tests, the Welch Test, multiple linear regressions, and correlation analysis were performed in order to assess the potential effect of air temperature, substrate type, vegetation cover, relative humidity, antecedent dry weather period (ADWP), rainfall duration, and rainfall maximum intensity. In some cases, GR design variables (i.e., substrate type and vegetation cover) were found to be significant for describing rainfall retention efficiencies and, depending on the GR type, some hydrological variables were also correlated with rainfall retention. Rainfall and GR runoff from 12 rainfall events were also monitored for total Kjeldahl nitrogen (TKN), nitrates, nitrites, ammonia, total phosphorus (TP), phosphates, pH, total dissolved solids (TDS), total suspended solids (TSS), color, turbidity, biological oxygen demand (BOD), chemical oxygen demand (COD), total coliforms, metals (i.e., zinc, copper, nickel, lead, selenium, aluminum, barium, boron, calcium, strontium, iron, lithium, magnesium, manganese, potassium, sodium), and polyaromatic hydrocarbons (PAHs). The results obtained confirmed that GR systems have the ability to neutralize pH, but are a source of the rest of the aforementioned parameters, excluding PAHs (with concentrations below detection limits), ammonia, TSS, selenium and lithium, where differences with control cases (rainfall and plastic panel runoff) were not statistically significant. Substrate type, event size, and rainfall regime are relevant variables for explaining runoff water quality.
The implementation of sustainable urban drainage systems (SUDS) is increasing due to their advantages, which transcend runoff control. As a result, it is important to find the appropriate SUDS locations to maximize the benefits for the watershed. This study develops a multiscale methodology for consolidated urban areas that allows the analysis of environmental, social, and economic aspects of SUDS implementation according to multiple objectives (i.e., runoff management, water quality improvements, and amenity generation). This methodology includes three scales: (a) citywide, (b) local, and (c) microscale. The citywide scale involves the definition of objectives through workshops with the participation of the main stakeholders, and the development of spatial analyses to identify (1) priority urban drainage sub-catchments: areas that need intervention, and (2) strategic urban drainage sub-catchments: zones with the opportunity to integrate SUDS due the presence of natural elements or future urban redevelopment plans. At a local scale, prospective areas are analyzed to establish the potential of SUDS implementation. Microscale comprises the use of the results from the previous scales to identify the best SUDS placement. In the latter scale, the SUDS types and treatment trains are selected. The methodology was applied to the city of Bogotá (Colombia) with a population of nearly seven million inhabitants living in an area of approximately 400 km2. Results include: (a) The identification of priority urban drainage sub-catchments, where the implementation of SUDS could bring greater benefits; (b) the determination of strategic urban drainage sub-catchments considering Bogotá’s future urban redevelopment plans, and green and blue-green corridors; and (c) the evaluation of SUDS suitability for public and private areas. We found that the most suitable SUDS types for public areas in Bogotá are tree boxes, cisterns, bioretention zones, green swales, extended dry detention basins, and infiltration trenches, while for private residential areas they are rain barrels, tree boxes, green roofs, and green swales.
Numerical and computational modelling of flow and pollutant dynamics in urban drainage systems is becoming more and more integral to planning and design. The main aim of integrated flow and pollutant models is to quantify the efficiency of different measures at reducing the amount of pollutants discharged into receiving water bodies and minimise the consequent negative water quality impact. The open source toolbox CITY DRAIN developed in the Matlab/Simulink environment, which was designed for integrated modelling of urban drainage systems, is used in this work. The goal in this study was to implement and test computational routines for representing sediment and pollutant loads in order to evaluate catchment surface pollution. Tested models estimate the accumulation, erosion and transport of pollutants--aggregately--on urban surfaces and in sewers. The toolbox now includes mathematical formulations for accumulation of pollutants during dry weather period and their wash-off during rainfall events. The experimental data acquired in a previous research project carried out by the Environmental Engineering Research Centre (CIIA) at the Universidad de los Andes in Bogotá (Colombia) was used for the calibration of the models. Different numerical approaches were tested for their ability to calibrate to the sediment transport conditions. Initial results indicate, when there is more than one peak during the rainfall event duration, wash-off processes probably can be better represented using a model based on the flow instead of the rainfall intensity. Additionally, it was observed that using more detailed models (compared with an instantaneous approach) for representing pollutant accumulation do not necessarily lead to better results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.