The increased target specificity of epidermal growth factor receptor (EGFR) inhibitors (EGFRIs) is associated with the reduction or abolition of nonspecific and haematopoietic side effects. However, coincident inhibition of receptor activity in tissues that depend on EGFR signalling for normal function has undesirable consequences. Because of the key role of EGFR signalling in skin, dermatological toxicities have frequently been described with EGFRIs. The resultant significant physical and psycho-social discomfort might lead to interruption or dose modification of anticancer agents. There is an urgent need for an improved understanding of these toxicities to develop adequate staging systems and mechanistically driven therapies, and to ensure quality of life and consistent antineoplastic therapy.
BackgroundEpidermal growth factor receptor inhibitors (EGFRI) produce various dermatologic side effects in the majority of patients, and guidelines are crucial for the prevention and treatment of these untoward events. The purpose of this panel was to develop evidence-based recommendations for EGFRI-associated dermatologic toxicities.MethodsA multinational, interdisciplinary panel of experts in supportive care in cancer reviewed pertinent studies using established criteria in order to develop first-generation recommendations for EGFRI-associated dermatologic toxicities.ResultsProphylactic and reactive recommendations for papulopustular (acneiform) rash, hair changes, radiation dermatitis, pruritus, mucositis, xerosis/fissures, and paronychia are presented, as well as general dermatologic recommendations when possible.ConclusionPrevention and management of EGFRI-related dermatologic toxicities is critical to maintain patients’ health-related quality of life and dose intensity of antineoplastic regimens. More rigorous investigation of these toxicities is warranted to improve preventive and treatment strategies.Electronic supplementary materialThe online version of this article (doi:10.1007/s00520-011-1197-6) contains supplementary material, which is available to authorized users.
Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal, monocyte-derived dendritic cells or macrophages in Langerhans Cell (LCH) and non-Langerhans (non-LCH) histiocytoses, respectively. The discovery of BRAFV600E mutations in ~50% of these patients provided the first molecular therapeutisc target in histiocytosis. However, recurrent driving mutations in the majority of BRAFV600E-wildtype, non-LCH patients are unknown, and recurrent cooperating mutations in non-MAP kinase pathways are undefined for the histiocytic neoplasms. Through combined whole exome and transcriptome sequencing, we identified recurrent kinase fusions involving BRAF, ALK, and NTRK1, as well as recurrent, activating MAP2K1 and ARAF mutations in BRAFV600E-wildtype, non-LCH patients. In addition to MAP kinase pathway lesions, recurrently altered genes involving diverse cellular pathways were identified. Treatment of MAP2K1- and ARAF-mutated, non-LCH patients using MEK and RAF inhibitors, respectively, resulted in clinical efficacy demonstrating the importance of detecting and targeting diverse kinase alterations in these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.