Proper development depends on precise spatiotemporal gene expression patterns. Most genes are regulated by multiple enhancers and often by multiple core promoters that generate similar transcripts. We hypothesize that these multiple promoters may be required either because enhancers prefer a specific promoter or because multiple promoters serve as a redundancy mechanism. To test these hypotheses, we studied the expression of the knirps locus in the early Drosophila melanogaster embryo, which is mediated by multiple enhancers and core promoters. We found that one of these promoters resembles a typical “sharp” developmental promoter, while the other resembles a “broad” promoter usually associated with housekeeping genes. Using synthetic reporter constructs, we found that some, but not all, enhancers in the locus show a preference for one promoter. By analyzing the dynamics of these reporters, we identified specific burst properties during the transcription process, namely burst size and frequency, that are most strongly tuned by the specific combination of promoter and enhancer. Using locus-sized reporters, we discovered that even enhancers that show no promoter preference in a synthetic setting have a preference in the locus context. Our results suggest that the presence of multiple promoters in a locus is both due to enhancer preference and a need for redundancy and that “broad” promoters with dispersed transcription start sites are common among developmental genes. Our results also imply that it can be difficult to extrapolate expression measurements from synthetic reporters to the locus context, where many variables shape a gene’s overall expression pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.