The reactivity of a representative set of 17 organozinc pivalates with 18 polyfunctional druglike electrophiles (informers) in Negishi cross-coupling reactions was evaluated by high-throughput experimentation protocols. The high-fidelity scaleup of successful reactions in parallel enabled the isolation of sufficient material for biological testing, thus demonstrating the high value of these new solid zinc reagents in a drug-discovery setting and potentially for many other applications in chemistry. Principal component analysis (PCA) clearly defined the independent roles of the zincates and the informers toward druggable-space coverage.
Herein we report the first highly enantioselective allenoate-Claisen rearrangement using doubly axially chiral phosphate sodium salts as catalysts. This synthetic method provides access to β-amino acid derivatives with vicinal stereocenters in up to 95% ee. We also investigated the mechanism of enantioinduction by transition state (TS) computations with DFT as well as statistical modeling of the relationship between selectivity and the molecular features of both the catalyst and substrate. The mutual interactions of charge-separated regions in both the zwitterionic intermediate generated by reaction of an amine to the allenoate and the Na +salt of the chiral phosphate leads to an orientation of the TS in the catalytic pocket that maximizes favorable noncovalent interactions. Crucial arene−arene interactions at the periphery of the catalyst lead to a differentiation of the TS diastereomers. These interactions were interrogated using DFT calculations and validated through statistical modeling of parameters describing noncovalent interactions.
A wide range of air-stable, solid, polyfunctional aryl and heteroarylzinc pivalates were efficiently prepared by either magnesium insertion or Hal/Mg exchange followed by transmetalation with Zn(OPiv)2 (OPiv = pivalate). By reducing the amount of LiCl the air stability could be significantly enhanced compared with previously prepared reagents. An alternative route is directed magnesiation using TMPMgCl⋅LiCl (TMP = 2,2,6,6-tetramethylpiperidyl) followed by transmetalation with Zn(OPiv)2 or, for very sensitive substrates, direct zincation by using TMPZnOPiv. These zinc reagents not only show excellent stability towards air, but they also undergo a broad range of C-C bond-formation reactions, such as allylation and carbocupration reactions, as well as addition to aldehydes and 1,4-addition reactions. Acylation reactions can be performed by using an excess of TMSCl to overcome side reactions of the omnipresent pivalate anion.
The treatment of various N-morpholino amides with TMPZnCl⋅LiCl (TMP=2,2,6,6-tetramethylpiperidyl) and Mg(OPiv) in THF at 25 °C provides solid zinc enolates with enhanced air and moisture stability (t in air: 1-3 h) after solvent evaporation. These enolates undergo Pd- and Cu-catalyzed cross-couplings with (hetero)aryl bromides as well as allylic and benzylic halides. The arylated N-morpholino amides were converted into various ketones by LaCl ⋅2 LiCl mediated acylation with Grignard reagents. The new, solid enolates were used to prepare a potent anti-breast-cancer drug candidate in six steps and 23 % overall yield.
The treatment of various allylic chlorides or bromides with zinc dust in the presence of lithium chloride and magnesium pivalate (Mg(OCOtBu)2) in THF affords allylic zinc reagents which, after evaporation of the solvent, produce solid zinc reagents that display excellent thermal stability. These allylic reagents undergo Pd-catalyzed cross-coupling reactions with PEPPSI-IPent, as well as highly regioselective and diastereoselective additions to aryl ketones and aldehydes. Acylation with various acid chlorides regioselectively produces the corresponding homoallylic ketones, with the new C-C bond always being formed on the most hindered carbon of the allylic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.