Background. Glioblastoma or glioma is the most common malignant brain tumor. Patients have a prognosis of approximately 15 months, despite the current aggressive treatment. Neurokinin-1 receptor (NK-1R) occurs naturally in human glioma, and it is necessary for the tumor development. Objective. The purpose of the study was to increase the knowledge about the involvement of the substance P (SP)/NK-1R system in human glioma. Methods. Cellular localization of NK-1R and SP was studied in GAMG and U-87 MG glioma cell lines by immunofluorescence. The contribution of both SP and NK-1R to the viability of these cells was also assessed after applying the tachykinin 1 receptor (TAC1R) or the tachykinin 1 (TAC1) small interfering RNA gene silencing method, respectively. Results. Both SP and the NK-1R (full-length and truncated isoforms) were localized in the nucleus and cytoplasm of GAMG and U-87 MG glioma cells. The presence of full-length NK-1R isoform was mainly observed in the nucleus, while the level of truncated isoform was higher in the cytoplasm. Cell proliferation was decreased when glioma cells were transfected with TAC1R siRNA, but not with TAC1. U-87 MG cells were more sensitive to the effect of the TAC1R inhibition than GAMG cells. The decrease in the number of glioma cells after silencing of the TAC1R siRNA gene was due to apoptotic and necrotic mechanisms. In human primary fibroblast cultured cells, TAC1R silencing by siRNA did not produce any change in cell viability. Conclusions. Our results show for the first time that the expression of the TAC1R gene (NK-1R) is essential for the viability of GAMG and U-87 MG glioma cells. On the contrary, the TAC1R gene is not essential for the viability of normal cells, confirming that NK-1R could be a promising and specific therapeutic target for the treatment of glioma.
Ageing is characterised by the accumulation of molecular and cellular damage through time, leading to a decline in physical and mental abilities. Currently, society has experienced a rapid increase in life expectancy, which has led to an increase in age-associated diseases. Therefore, it is crucial to study the process of ageing to guarantee the best conditions in the final stages of life. In recent years, interest has increased in a myokine known as irisin, which is secreted during physical exercise. This polypeptide hormone is produced by various organs, mainly muscle, and once it is released into the blood, it performs a wide variety of functions that are involved in metabolic control and may be relevant during some of the diseases associated with ageing. The aim of this review is to highlight the recent studies of irisin, such as its mechanism of expression, blood release, distribution, tissue target and participation in various cellular metabolic reactions and the relationship with key anti-ageing pathways such as adenosine monophosphate-activated protein kinase, silent information regulator T 1, autophagy and telomerase. In conclusion, irisin is a key player during the ageing process and it could be a novel target molecule for the therapeutic approach to boost longevity pathways. However, more research will be necessary to use this promising hormone for this gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.