Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.
Water injection is a means of internal cooling of the engine. During combustion, excess temperatures generated are absorbed by water as latent heat. Optimum water injection quantities were found to be about 0.015 ml to 0.031 ml of water per cycle on a 592 cc SI engine. The experiments were carried out by tapping the fuel injector signal and designing a circuit to inject water at the instant petrol is injected. Fuel injection duration was tuned by using a Wide Band Lambda sensor. The engine was supercharged as well by means of compressed air supply and regulated by hysteresis control. Water injection was investigated while varying spark advance to find the Maximum Brake Torque (MBT). Maximum obtained torque improvement with water injection was 16 %. This was achieved at a manifold absolute pressure of 120 kPa, with air temperature at ambient. The same load condition, 120 kPa, with air heated to the temperature that would be obtained from isentropic compression, resulted in a torque improvement of 7 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.