Ankle-foot orthosis (AFO) designs vary in size, shape, and functional characteristics depending on the desired clinical application. Passive Dynamic (PD) Response ankle-foot orthoses (PD-AFOs) constitute a design that seeks to improve walking ability for persons with various neuromuscular disorders by passively (like a spring) providing variable levels of support during the stance phase of gait. Current PD-AFO manufacturing technology is either labor intensive or not well suited for the detailed refinement of PD-AFO bending stiffness characteristics. The primary objective of this study was to explore the feasibility of using a rapid freeform prototyping technique, selective laser sintering (SLS), as a PD-AFO manufacturing process. Feasibility was determined by replicating the shape and functional characteristics of a carbon fiber AFO (CF-AFO). The study showed that a SLS-based framework is ideally suited for this application. A second objective was to determine the optimal SLS material for PD-AFOs to store and release elastic energy; considering minimizing energy dissipation through internal friction is a desired material characteristic. This study compared the mechanical damping of the CF-AFO to PD-AFOs manufactured by SLS using three different materials. Mechanical damping evaluation ranked the materials as Rilsan D80 (best), followed by DuraForm PA and DuraForm GF. In addition, Rilsan D80 was the only SLS material able to withstand large deformations.
There have been a variety of efforts demonstrating the use of solid freeform fabrication (SFF) for prosthetic socket fabrication though there has been little effort in leveraging the strengths of the technology. SFF encompasses a class of technologies that can create three dimensional objects directly from a geometric database without specific tooling or human intervention. A real strength of SFF is that cost of fabrication is related to the volume of the part, not the part's complexity. For prosthetic socket fabrication this means that a sophisticated socket can be fabricated at essentially the same cost as a simple socket. Adding new features to a socket design becomes a function of software. The work at The University of Texas Health Science Center at San Antonio (UTHSCSA) and University of Texas at Austin (UTA) has concentrated on developing advanced sockets that incorporate structural features to increase comfort as well as built in fixtures to accommodate industry standard hardware. Selective laser sintering (SLS) was chosen as the SFF technology to use for socket fabrication as it was capable of fabricating sockets using materials appropriate for prosthetics. This paper details the development of SLS prosthetic socket fabrication techniques at UTHSCSA/UTA over a six-year period.
Selective laser sintering (SLS) is a powerful manufacturing technology that does not require part-specific tooling or significant human intervention and provides the ability to easily generate parts with complex geometric designs. The present work focuses on developing a manufacturing framework using this technology to produce subject-specific transtibial amputee prosthetic sockets made of Duraform PA, which is a nylon-based material. The framework includes establishing an overall socket design (using the patellar-tendon bearing approach), performing a structural analysis using the finite element method (FEM) to ensure structural reliability during patient use, and validating the results by comparing the model output with experimental data. The validation included quantifying the failure conditions for the socket through a series of bending moment and compression tests. In the case study performed, the FEM results were within 3% of the experimental failure loads for the socket and were considered satisfactory.
A very attractive advantage of manufacturing prosthetic sockets using solid freeform fabrication is the freedom to introduce design solutions that would be difficult to implement using traditional manufacturing techniques. Such is the case with compliant features embedded in amputee prosthetic sockets to relieve contact pressure at the residual limb-socket interface. The purpose of this study was to present a framework for designing compliant features to be incorporated into transtibial sockets and manufacturing prototypes using selective laser sintering (SLS) and Duraform material. The design process included identifying optimal compliant features using topology optimization algorithms and integrating these features within the geometry of the socket model. Using this process, a compliant feature consisting of spiral beams and a supporting external structure was identified. To assess its effectiveness in reducing residual limb-socket interface pressure, a case study was conducted using SLS manufactured prototypes to quantify the difference in interface pressure while a patient walked at his self-selected pace with one noncompliant and two different compliant sockets. The pressure measurements were performed using thin pressure transducers located at the distal tibia and fibula head. The measurements revealed that the socket with the greatest compliance reduced the average and peak pressure by 22% and 45% at the anterior side distal tibia, respectively, and 19% and 23% at the lateral side of the fibula head, respectively. These results indicate that the integration of compliant features within the socket structure is an effective way to reduce potentially harmful contact pressure and increase patient comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.