Due to its all time capability, synthetic aperture radar (SAR) remote sensing plays an important role in Earth observation. The ability to interpret the data is limited, even for experts, as the human eye is not familiar to the impact of distance-dependent imaging, signal intensities detected in the radar spectrum as well as image characteristics related to speckle or steps of post-processing. This paper is concerned with machine learning for SAR-to-optical image-to-image translation in order to support the interpretation and analysis of original data. A conditional adversarial network is adopted and optimized in order to generate alternative SAR image representations based on the combination of SAR images (starting point) and optical images (reference) for training. Following this strategy, the focus is set on the value of empirical knowledge for initialization, the impact of results on follow-up applications, and the discussion of opportunities/drawbacks related to this application of deep learning. Case study results are shown for high resolution (SAR: TerraSAR-X, optical: ALOS PRISM) and low resolution (Sentinel-1 and -2) data. The properties of the alternative image representation are evaluated based on feedback from experts in SAR remote sensing and the impact on road extraction as an example for follow-up applications. The results provide the basis to explain fundamental limitations affecting the SAR-to-optical image translation idea but also indicate benefits from alternative SAR image representations.
Studies in the last years have proved the outstanding performance of deep learning for computer vision tasks in the remote sensing field, such as disparity estimation. However, available datasets mostly focus on close-range applications like autonomous driving or robot manipulation. To reduce the domain gap while training we present SyntCities, a synthetic dataset resembling the aerial imagery on urban areas. The pipeline used to render the images is based on 3D modelling, which helps to avoid acquisition costs, provides sub-pixel accurate dense ground truth and simulates different illumination conditions. The dataset additionally provides multi-class semantic maps and can be used converted to point cloud format to benefit a wider research community. We focus on the task of disparity estimation and evaluate the performance of the traditional Semi-Global Matching and state of the art architectures, trained with SyntCities and other datasets, on real aerial and satellite images. A comparison with the widely used SceneFlow dataset is also presented. Strategies using a mixture of both real and synthetic samples are studied as well. Results show significant improvements in terms of accuracy for the disparity maps. SyntCities can be downloaded at: https://tinyurl.com/77e3n6m9
Dense matching plays a crucial role in computer vision and remote sensing, to rapidly provide stereo products using inexpensive hardware. Along with the development of deep learning, the Guided Aggregation Network (GA-Net) achieves state-of-the-art performance via the proposed Semi-Global Guided Aggregation layers and reduces the use of costly 3D convolutional layers. To solve the problem of GA-Net requiring large GPU memory consumption, we design a pyramid architecture to modify the model. Starting from a downsampled stereo input, the disparity is estimated and continuously refined through the pyramid levels. Thus, the disparity search is only applied for a small size of stereo pair and then confined within a short residual range for minor correction, leading to highly reduced memory usage and runtime. Tests on close-range, aerial, and satellite data demonstrate that the proposed algorithm achieves significantly higher efficiency (around eight times faster consuming only 20–40% GPU memory) and comparable results with GA-Net on remote sensing data. Thanks to this coarse-to-fine estimation, we successfully process remote sensing datasets with very large disparity ranges, which could not be processed with GA-Net due to GPU memory limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.