African dust storm events (ADE) travel across the Atlantic Ocean (ADEAO) and reach the Puerto Rican coast (ADEPRC), potentially impacting air quality and human health. To what extent seasonal variations in atmospheric particulate matter (PM) size fractions, composition and sources trigger respiratory-adverse effects to Puerto Ricans is still unclear. In the present study, we investigated the pro-inflammatory and cytotoxic effects of PM samples harvested during ADEAO (PM10), ADEPRC (PM2.5 and PM10) and Non-ADE (Preand Post-ADEAO and Non-ADEPRC), using BEAS-2B cells. Endotoxins (ENX) in PM2.5 and PM10 extracts and traces of metals (TMET) in PM2.5 extracts were also examined. IL-6 and IL-8 secretion and cytotoxicity were used as endpoints. ADEAO and ADEPRC extracts were found to be more cytotoxic than Non-ADE and ADEAO were more toxic than ADEPRC extracts. PM10 extracts from ADEAO and Post-ADEAO caused significant secretion of IL-8. IL-6 and IL-8 secretion was higher following treatment with PM10 and PM2.5 ADEPRC than with Non-ADEPRC extracts. ENX levels were found to be higher in PM10 ADEAO than in the rest of the samples tested. TMET levels were higher in PM2.5 ADEPRC than in Non-ADEPRC extracts. Deferoxamine significantly reduced cytotoxicity and IL-6 and IL-8 secretion whereas Polymyxin B did not. TMET in PM2.5 fractions is a major determinant in ADEPRC-induced toxicity and work in conjunction with ENX to cause toxicity to lung cells in vitro. ENX and TMET may be responsible, in part, for triggering PM-respiratory adverse responses in susceptible and predisposed individuals.
The health impact of the global African dust event (ADE) phenomenon in the Caribbean has been vaguely investigated. Heavy metals in ADE and Non-ADE extracts were evaluated for the formation of reactive oxygen species (ROS) and antioxidant capacity by cells using, deferoxamine mesylate (DF) and N-acetyl-L-cysteine (NAC). Results show that ADE particulate matter 2.5 (PM2.5) induces ROS and stimulates oxidative stress. Pre-treatment with DF reduces ROS in ADE and Non-ADE extracts and in lung cells demonstrating that heavy metals are of utmost importance. Glutathione-S-transferase and Heme Oxygenase 1 mRNA levels are induced with ADE PM and reduced by DF and NAC. ADE extracts induced Nrf2 activity and IL-8 mRNA levels significantly more than Non-ADE. NF-κB activity was not detected in any sample. Trace elements and organic constituents in ADE PM2.5 enrich the local environment load, inducing ROS formation and activating antioxidant-signaling pathways increasing pro-inflammatory mediator expressions in lung cells.
Particle pollution from urban and industrialized regions in Rio de Janeiro (RJ), Brazil was analyzed for toxic and pro-inflammatory (cytokines: IL-6, IL-8, IL-10) responses in human bronchial epithelial cells. Trace elements contribution was studied. Airborne particulate matter was collected at: three industrial sites Ind-1 (PM10) and Ind-2a and 2b (PM2.5); Centro urban area (PM10) and two rural sites (PM2.5, PM10). PM10 acetone extracts were toxic and did not elicit cytokine release; aqueous extracts were less toxic and stimulated the release of IL-6 and IL-8. PM2.5 aqueous extracts from Ind-2 decreased the release of IL-6 and IL-8. Zinc concentration was higher at the industrial and rural reference sites (Ref-1-2) although metals were not associated to cytokines changes. These results demonstrate that PM from RJ can either increase or decrease cytokine secretion in vitro while being site specific and time dependent.
African Dust Events (ADE) are a seasonal phenomenon that has been suggested to exacerbate respiratory and proinflammatory diseases in Puerto Rico (PR). Increases in PM10 concentration and the effects of biological endotoxins (ENX) are critical factors to consider during these storms. ENX promote proinflammatory responses in lungs of susceptible individuals through activation of the Toll-like receptors (TLR2/4) signaling pathways. The objective of the study was to evaluate the toxicological and proinflammatory responses stimulated by ADE PM10 ENX reaching PR using human bronchial epithelial cells. PM10 organic extracts from a rural and urban site in PR (March 2004) were obtained from ADE and non-ADE and compared. A retrospective data analysis (PM10 concentration, aerosol images, and pediatric asthma claims) was performed from 2000 to 2012 with particular emphasis in 2004 to classify PM samples. Urban extracts were highly toxic, proinflammatory (IL-6/IL-8 secretion), and induced higher TLR4 expression and NF-κB activation compared to rural extracts. ENX were found to contribute to cytotoxicity and inflammatory responses provoked by urban ADE PM10 exposure suggesting a synergistic potency of local and natural ENX incoming from ADE. The contribution of ADE PM10 ENX is valuable in order to understand interactions and action mechanisms of airborne pollutants as asthma triggers in PR.
BackgroundFor many years, African Dust Storms (ADE) has been thought to be associated with high prevalence of asthma in Puerto Rico (PR). Endotoxins (ENX) have been associated with ADE particulate matter (PM) and are known to promote pro-inflammatory responses in lung cells of susceptible individuals through the Toll-like receptor (TLR2/4) signaling pathways. Genetic variants are plausible contributors to such susceptibility. Therefore, we have evaluated a series of nine single nucleotide polymorphisms (SNPs) in TLR genes, which have been correlated positive and negatively to asthma prevalence and/or risk, in the Puerto Rican asthmatic population.MethodsThe following SNPs were evaluated in 62 asthmatics and 61 controls through Taqman® Real Time PCR Assay: TLR4 (+896A/G, +1196C/T, −6687A/G); TLR2 (+596C/T, −16934 T/A, +399A/G, +1349C/T) and CD14 (−159C/T, +1188C/G). Genotypes were assessed for asthma association employing an odds ratio (OR) analysis.ResultsMinor allele frequencies (n = 123) were determined for those variants as 0.07, 0.06, 0.35, 0.35, 0.37, 0.29, 0.04, 0.35 and 0.11, respectively. Two (+596C/T, +399A/G) TLR2 SNPs showed to be more represented in the asthmatic group by 89 % and 65 %, respectively. TLR4 SNP +896A/G analysis revealed only 1 G/G genotype (2 %) on the asthmatic group. The CD14 SNPs were similarly represented in the Puerto Rican population. Only the TLR2 +596 SNP was found to be significantly associated to asthma (OR = 3.24 for CT, 2.71 for TT) and particularly to females.ConclusionsThe identification of TLR SNPs will reveal potential candidates for gene-environment interactions in Puerto Ricans. As far as we know this is the first study to evaluate this type of TLR gene polymorphisms in Puerto Rican asthmatics, contributing to the current knowledge in the Hispanic population.Electronic supplementary materialThe online version of this article (doi:10.1186/s12890-016-0272-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.