[1] The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
The Gulf of California is an excellent example of how new ocean basins form. Tectonically, the northern Gulf of California is an incipient ocean basin and studies on it have defined acoustic basement and reveal the presence of new oceanic crust and intrusive bodies. Some recent studies report fundamental differences between the basins of the northern and southern Gulf of California: that the latter have well-developed oceanic crust beneath a thin cover of sediments, whereas the northern basins show proto-ocean basins, which may reflect thermal insulation of the thick sedimentary cover, the presence of lowangle faults, and more diffuse and distributed deformation. During the 1970s, Petróleos Mexicanos (PEMEX) undertook a 2D seismic reflection survey in the northern Gulf of California, over many active rift basins, including the Consag Basin. Through the processing and interpretation of these data, we describe the structural characteristics of the Consag Basin beyond 2 km depths. Using seismic reflection data, we identified an intrusion in the central part of this basin that may represent new oceanic crust buried by more than 4 km of sediments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.