We experimentally demonstrate a perfect plasmonic absorber at lambda = 1.6 microm. Its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees. We introduce a novel concept to utilize this perfect absorber as plasmonic sensor for refractive index sensing. This sensing strategy offers great potential to maintain the performance of localized surface plasmon sensors even in nonlaboratory environments due to its simple and robust measurement scheme.
We demonstrate the transition from isolated to collective optical modes in plasmonic oligomers. Specifically, we investigate the resonant behavior of planar plasmonic hexamers and heptamers with gradually decreasing the interparticle gap separation. A pronounced Fano resonance is observed in the plasmonic heptamer for separations smaller than 60 nm. The spectral characteristics change drastically upon removal of the central nanoparticle. Our work paves the road toward complex hierarchical plasmonic oligomers with tailored optical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.