Leiomyosarcoma (LMS) is an aggressive mesenchymal malignancy with few therapeutic options. The mechanisms underlying LMS development, including clinically actionable genetic vulnerabilities, are largely unknown. Here we show, using whole-exome and transcriptome sequencing, that LMS tumors are characterized by substantial mutational heterogeneity, near-universal inactivation of TP53 and RB1, widespread DNA copy number alterations including chromothripsis, and frequent whole-genome duplication. Furthermore, we detect alternative telomere lengthening in 78% of cases and identify recurrent alterations in telomere maintenance genes such as ATRX, RBL2, and SP100, providing insight into the genetic basis of this mechanism. Finally, most tumors display hallmarks of “BRCAness”, including alterations in homologous recombination DNA repair genes, multiple structural rearrangements, and enrichment of specific mutational signatures, and cultured LMS cells are sensitive towards olaparib and cisplatin. This comprehensive study of LMS genomics has uncovered key biological features that may inform future experimental research and enable the design of novel therapies.
A potential connection between physico-chemical properties of mRNAs and cognate proteins, with implications concerning both the origin of the genetic code and mRNA–protein interactions, is unexplored. We compare pyrimidine content of naturally occurring mRNA coding sequences with the propensity of cognate protein sequences to interact with pyrimidines. The latter is captured by polar requirement, a measure of solubility of amino acids in aqueous solutions of pyridines, heterocycles closely related to pyrimidines. We find that the higher the pyrimidine content of an mRNA, the stronger the average propensity of its cognate protein’s amino acids to interact with pyridines. Moreover, window-averaged pyrimidine profiles of individual mRNAs strongly mirror polar-requirement profiles of cognate protein sequences. For example, 4953 human proteins exhibit a correlation between the two with |R| > 0.8. In other words, pyrimidine-rich mRNA regions quantitatively correspond to regions in cognate proteins containing residues soluble in pyrimidine mimetics and vice versa. Finally, by studying randomized genetic code variants we show that the universal genetic code is highly optimized to preserve these correlations. Overall, our findings redefine the stereo-chemical hypothesis concerning code’s origin and provide evidence of direct complementary interactions between mRNAs and cognate proteins before development of ribosomal decoding, but also presently, especially if both are unstructured.
Chromothripsis is a recently identified mutational phenomenon, by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosome(s). Considered as an early event in tumour development, this form of genome instability plays a prominent role in tumour onset. Chromothripsis prevalence might have been underestimated when using low-resolution methods, and pan-cancer studies based on sequencing are rare. Here we analyse chromothripsis in 28 tumour types covering all major adult cancers (634 tumours, 316 whole-genome and 318 whole-exome sequences). We show that chromothripsis affects a substantial proportion of human cancers, with a prevalence of 49% across all cases. Chromothripsis generates entity-specific genomic alterations driving tumour development, including clinically relevant druggable fusions. Chromothripsis is linked with specific telomere patterns and univocal mutational signatures in distinct tumour entities. Longitudinal analysis of chromothriptic patterns in 24 matched tumour pairs reveals insights in the clonal evolution of tumours with chromothripsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.