The inherent ability of bacteriophages (phages) to infect specific bacterial hosts makes them ideal candidates to develop into antimicrobial agents for pathogen-specific remediation in food processing, biotechnology, and medicine (e.g., phage therapy). Conversely, phage contaminations of fermentation processes are a major concern to dairy and bioprocessing industries. The first stage of any successful phage infection is adsorption to a bacterial host cell, mediated by receptor-binding proteins (RBPs). As the first point of contact, the binding specificity of phage RBPs is the primary determinant of bacterial host range, and thus defines the remediative potential of a phage for a given bacterium. Co-evolution of RBPs and their bacterial receptors has forced endless adaptation cycles of phage-host interactions, which in turn has created a diverse array of phage adsorption mechanisms utilizing an assortment of RBPs. Over the last decade, these intricate mechanisms have been studied intensely using electron microscopy and X-ray crystallography, providing atomic-level details of this fundamental stage in the phage infection cycle. This review summarizes current knowledge surrounding the molecular basis of host interaction for various socioeconomically important Gram-positive targeting phage RBPs to their protein- and saccharide-based receptors. Special attention is paid to the abundant and best-characterized Siphoviridae family of tailed phages. Unravelling these complex phage-host dynamics is essential to harness the full potential of phage-based technologies, or for generating novel strategies to combat industrial phage contaminations.
Detection of Salmonella and L. monocytogenes in food samples by current diagnostic methods requires relatively long time to results (2-6 days). Furthermore,t he ability to perform environmental monitoring at the factory site for these pathogens is limited due to the need for laboratory facilities. Herein, we report new chemiluminescence probes for the ultrasensitive direct detection of viable pathogenic bacteria. The probes are composed of ab right phenoxy-dioxetane luminophore masked by triggering group,whichisactivated by aspecific bacterial enzyme,and could detect their corresponding bacteria with an LOD value of about 600-fold lower than that of fluorescent probes.M oreover,w ew ere able to detect am inimum of 10 Salmonella cells within 6hincubation. The assayallows for bacterial enrichment and detection in one test tube without further sample preparation. We anticipate that this design strategy will be used to prepare analogous chemiluminescence probes for other enzymes relevant to specific bacteria detection and point-of-care diagnostics.
CRISPR–Cas systems provide bacteria with adaptive immunity against invading DNA elements including bacteriophages and plasmids. While CRISPR technology has revolutionized eukaryotic genome engineering, its application to prokaryotes and their viruses remains less well established. Here we report the first functional CRISPR–Cas system from the genus Listeria and demonstrate its native role in phage defense. LivCRISPR-1 is a type II-A system from the genome of L. ivanovii subspecies londoniensis that uses a small, 1078 amino acid Cas9 variant and a unique NNACAC protospacer adjacent motif. We transferred LivCRISPR-1 cas9 and trans-activating crRNA into Listeria monocytogenes. Along with crRNA encoding plasmids, this programmable interference system enables efficient cleavage of bacterial DNA and incoming phage genomes. We used LivCRISPR-1 to develop an effective engineering platform for large, non-integrating Listeria phages based on allelic replacement and CRISPR-Cas-mediated counterselection. The broad host-range Listeria phage A511 was engineered to encode and express lysostaphin, a cell wall hydrolase that specifically targets Staphylococcus peptidoglycan. In bacterial co-culture, the armed phages not only killed Listeria hosts but also lysed Staphylococcus cells by enzymatic collateral damage. Simultaneous killing of unrelated bacteria by a single phage demonstrates the potential of CRISPR–Cas-assisted phage engineering, beyond single pathogen control.
Contractile injection systems (bacteriophage tails, type VI secretions system, R‐type pyocins, etc.) utilize a rigid tube/contractile sheath assembly for breaching the envelope of bacterial and eukaryotic cells. Among contractile injection systems, bacteriophages that infect Gram‐positive bacteria represent the least understood members. Here, we describe the structure of Listeria bacteriophage A511 tail in its pre‐ and post‐host attachment states (extended and contracted, respectively) using cryo‐electron microscopy, cryo‐electron tomography, and X‐ray crystallography. We show that the structure of the tube‐baseplate complex of A511 is similar to that of phage T4, but the A511 baseplate is decorated with different receptor‐binding proteins, which undergo a large structural transformation upon host attachment and switch the symmetry of the baseplate‐tail fiber assembly from threefold to sixfold. For the first time under native conditions, we show that contraction of the phage tail sheath assembly starts at the baseplate and propagates through the sheath in a domino‐like motion.
The Gram-positive pathogen Listeria monocytogenes can be subdivided into at least 12 different serovars, based on the differential expression of a set of somatic and flagellar antigens. Of note, strains belonging to serovars 1/2a, 1/2b, and 4b cause the vast majority of foodborne listeriosis cases and outbreaks. The standard protocol for serovar determination involves an agglutination method using a set of sera containing cell surface-recognizing antibodies. However, this procedure is imperfect in both precision and practicality, due to discrepancies resulting from subjective interpretation. Furthermore, the exact antigenic epitopes remain unclear, due to the preparation of the absorbed sera and the complex nature of polyvalent antibody binding. Here, we present a novel method for quantitative somatic antigen differentiation using a set of recombinant affinity proteins (cell wall-binding domains and receptor-binding proteins) derived from a collection of Listeria bacteriophages. These proteins enable rapid, objective, and precise identification of the different teichoic acid glycopolymer structures, which represent the O-antigens, and allow a near-complete differentiation. This glycotyping approach confirmed serovar designations of over 60 previously characterized Listeria strains. Using select phage receptor-binding proteins coupled to paramagnetic beads, we also demonstrate the ability to specifically isolate serovar 1/2 or 4b cells from a mixed culture. In addition, glycotyping led to the discovery that strains designated serovar 4e actually possess an intermediate 4b-4d teichoic acid glycosylation pattern, underpinning the high discerning power and precision of this novel technique. IMPORTANCE Listeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.