For WM lesion detection, similar results were observed when only conventional clinical sequences (FLAIR, MPRAGE) were used compared to a combination of conventional and "advanced" sequences (MP2RAGE, DIR). Cortical lesion detection increased significantly when "advanced" sequences were used. J. Magn. Reson. Imaging 2015. J. Magn. Reson. Imaging 2016;43:1445-1454.
Neurofilament light chain (NfL) has been demonstrated to correlate with multiple sclerosis disease severity as well as treatment response. nevertheless, additional serum biomarkers are still needed to better differentiate disease activity from disease progression. The aim of our study was to assess serum glial fibrillary acid protein (s-GFAP) and neurofilament light chain (s-NfL) in a cohort of 129 multiple sclerosis (MS) patients. Eighteen primary progressive multiple sclerosis (PPMS) and 111 relapsing remitting MS (RRMS) were included. We showed that these 2 biomarkers were significantly correlated with each other (R = 0.72, p < 0.001). Moreover, both biomarkers were higher in PPMS than in RRMS even if multivariate analysis only confirmed this difference for s-GFAP (130.3 ± 72.8 pg/ ml vs 83.4 ± 41.1 pg/ml, p = 0.008). Finally, s-GFAP was correlated with white matter lesion load and inversely correlated with WM and GM volume. Our results seem to confirm the added value of s-GFAP in the context of multiple sclerosis. Multiple sclerosis (MS) is a complex autoimmune neurological disease 1. Despite progresses in the management of MS, reliable and easy-to-use biomarkers are needed to accurately identify patients at risk of future disease progression 2. The recent development of highly sensitive immunoassay platforms has enabled the measurement in the serum of several biomarkers of interest in MS. Notably, serum neurofilament light chain (s-NfL) is correlated with disease activity, treatment response, risk of disease progression and MRI markers of disease activity/severity 3-8. Serum Glial Fibrillary Acid Protein (s-GFAP), an intermediate astrocytes cytoskeletal protein, has been only more recently shown to be higher in progressive MS than in RRMS and correlate with disability 9-11 .
ObjectiveQuantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients.MethodsThirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue.ResultsIn patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter (p = 0.005) and a decrease of T1 relaxation times in the pallidum (p < 0.05), which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time (p-value < 2.2e−16) and a significant increase in MTR (p-value < 1e−6), suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics—and not changes in lesions or brain volume—were correlated to motor and cognitive tests scores evolution (Adj-R2 > 0.4, p < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested by histopathological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.