SummaryInflammatory immune reactions in response to periodontopathogens are thought to protect the host against infection, but may trigger periodontal destruction. Thus, we examined the mechanisms by which the proinflammatory cytokine tumour necrosis factor (TNF)-a modulates the outcome of Actinobacillus actinomycetemcomitans-induced periodontal disease in mice. Our results showed that TNF-a receptor p55-deficient mice [p55TNF-knockout (KO)] developed a less severe periodontitis in response to A. actinomycetemcomitans infection, characterized by significantly less alveolar bone loss and inflammatory reaction. Real-time polymerase chain reaction (PCR) demonstrated that levels of chemokines (CXCL1, 3 and 10; CCL3 and 5) and their receptors (CXCR2 and 3, CCR5) were lower in p55TNF-KO mice, as were matrix metalloproteinase (MMP)-1, 2 and 9 and receptor activator of nuclear factor kB ligand (RANKL) mRNA levels. However, the absence of the TNF-a p55 results in an impairment of protective immunity to A. actinomycetemcomitans infection, characterized by increased bacterial load and higher levels of C-reactive protein during the course of disease. Such impaired host response may be the result of the reduced chemoattraction of lymphocytes, neutrophils and macrophages, and reduced inducible nitric oxide synthase expression (iNOS) and myeloperoxidase (MPO) production in periodontal tissues of p55 TNF-KO mice. Our results demonstrate the mechanisms involved determining periodontal disease severity by TNF-a receptor p55, and its role in providing immune protection to A. actinomycetemcomitans periodontal infection.
Increasing epidemiologic evidence supports a link between periodontitis and rheumatoid arthritis. The actual involvement of periodontitis in the pathogenesis of rheumatoid arthritis and the underlying mechanisms remain, however, poorly understood. We investigated the influence of concomitant periodontitis on clinical and histopathologic characteristics of T cell–mediated experimental arthritis and evaluated modulation of type II collagen (CII)–reactive Th cell phenotype as a potential mechanism. Repeated oral inoculations of periodontal pathogens Porphyromonas gingivalis and Prevotella nigrescens induced periodontitis in mice, as evidenced by alveolar bone resorption. Interestingly, concurrent periodontitis induced by both bacteria significantly aggravated the severity of collagen-induced arthritis. Exacerbation of arthritis was characterized by increased arthritic bone erosion, whereas cartilage damage remained unaffected. Both P. gingivalis and P. nigrescens skewed the CII-specific T cell response in lymph nodes draining arthritic joints toward the Th17 phenotype without affecting Th1. Importantly, the levels of IL-17 induced by periodontal pathogens in CII-specific T cells directly correlated with the intensity of arthritic bone erosion, suggesting relevance in pathology. Furthermore, IL-17 production was significantly correlated with periodontal disease–induced IL-6 in lymph node cell cultures. The effects of the two bacteria diverged in that P. nigrescens, in contrast to P. gingivalis, suppressed the joint-protective type 2 cytokines, including IL-4. Further in vitro studies showed that the Th17 induction strongly depended on TLR2 expression on APCs and was highly promoted by IL-1. Our data provide evidence of the involvement of periodontitis in the pathogenesis of T cell–driven arthritis through induction of Ag-specific Th17 response.
The ligature and injection of heat-killed Pg models were the most representative of periodontal disease in humans, whereas the oral gavage models were not effective at inducing the disease under the experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.