We present new hypotheses and report experimental evidence for powerful selective forces impelling the evolution of both eusociality and the soldier caste in termites. Termite ancestors likely had a nesting and developmental life history similar to that of the living family Termopsidae, in which foraging does not occur outside the host wood, and nonsoldier helpers retain lifelong options for differentiation into reproductives. A local neighborhood of families that live exclusively within a limited resource results in interactions between conspecific colonies, high mortality of founding reproductives, and opportunities for accelerated inheritance of the nest and population by offspring that differentiate into nondispersing neotenic reproductives. In addition, fertile reproductive soldiers, a type of neotenic previously considered rare and docile, frequently develop in this intraspecific competitive context. They can be highly aggressive in subsequent interactions, supporting the hypothesis that intercolonial battles influenced the evolution of modern sterile termite soldier weaponry and behaviors.
The evolutionary success of ants and other social insects is considered to be intrinsically linked to division of labor among workers. The role of the brains of individual ants in generating division of labor, however, is poorly understood, as is the degree to which interspecific variation in worker social phenotypes is underscored by functional neurobiological differentiation. Here we demonstrate that dimorphic minor and major workers of different ages from three ecotypical species of the hyperdiverse ant genus Pheidole have distinct patterns of neuropil size variation. Brain subregions involved in sensory input (optic and antennal lobes), sensory integration, learning and memory (mushroom bodies), and motor functions (central body and subesophageal ganglion) vary significantly in relative size, reflecting differential investment in neuropils that likely regulate subcaste- and age-correlated task performance. Worker groups differ in brain size and display patterns of altered isometric and allometric subregion scaling that affect brain architecture independently of brain size variation. In particular, mushroom body size was positively correlated with task plasticity in the context of both age- and subcaste-related polyethism, providing strong, novel support that greater investment in this neuropil increases behavioral flexibility. Our findings reveal striking levels of developmental plasticity and evolutionary flexibility in Pheidole worker neuroanatomy, supporting the hypothesis that mosaic alterations of brain composition contribute to adaptive colony structure and interspecific variation in social organization.
Sex‐ratio (SR) males produce predominantly female progeny because most Y chromosome sperm are rendered nonfunctional. The resulting transmission advantage of XSR chromosomes should eventually cause population extinction unless segregation distortion is masked by suppressors or balanced by selection. By screening male stalk‐eyed flies, Cyrtodiopsis dalmanni, for brood sex ratio we found unique SR alleles at three X‐linked microsatellite loci and used them to determine if SR persists as a balanced polymorphism. We found that XSR/XST females produced more offspring than other genotypes and that SR males had lower sperm precedence and exhibited lower fertility when mating eight females in 24 h. Adult survival was independent of SR genotype but positively correlated with eye span. We infer that the SR polymorphism is likely maintained by a combination of weak overdominance for female fecundity and frequency dependent selection acting on male fertility. Our discovery of two SR haplotypes in the same population in a 10‐year period further suggests that this SR polymorphism may be evolving rapidly.
As social insect workers mature, outside-nest tasks associated with foraging and defense are typically performed at higher frequencies. Foraging in ants is often a pheromonally mediated collective action performed by mature workers; age-dependent differences in olfactory response thresholds may therefore proximately regulate task repertoire development. In the ant Pheidole dentata, foraging activity increases with chronological age in minor workers, and is chemically controlled. The onset of foraging in minor workers is accompanied by marked neuroanatomical and neurochemical changes, including synaptic remodeling in olfactory regions of the brain, proliferation of serotonergic neurons, and increased brain titers of monoamines, notably serotonin. We examined the linkage of serotonin and olfactory responsiveness by assaying trail-following performance in mature P. dentata minor workers with normal serotonin levels, or serotonin levels experimentally lowered by oral administration of the serotonin synthesis inhibitor α-methyltryptophan (AMTP). By assessing responsiveness to standardized pheromone trails, we demonstrate that trail-following behaviors are significantly reduced in serotonin-depleted workers. AMTP-treated individuals were less likely to initiate trail following, and oriented along pheromone trails for significantly shorter distances than untreated, similar-age workers. These results demonstrate for the first time that serotonin modulates olfactory processes and/or motor functions associated with cooperative foraging in ants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.