Among the endemic notothenioid fish of Antarctica, the Antarctic silverfish (Pleuragramma antarcticum) is the only species in which all developmental stages live throughout the water column. It is widely distributed in the shelf waters around the continent, inhabiting both open waters and areas of pack ice at depths from 0 to 900 m. In successfully occupying this habitat, it evolved a suite of specific biological, ecological and physiological adaptations to the environmental conditions in the cold and highly seasonal Antarctic waters. Specialization for the pelagic environment evolved over millions of years enabled life under unusual environmental constraints and colonization of the pelagic realm of the Antarctic continental shelf. A sudden change of environmental conditions driven by the current rapid climate change could negatively affect this weak equilibrium, with a catastrophic cascade effecting higher trophic levels. Indeed, as both adults and early life stages of the Antarctic silverfish appear to be strongly dependent on sea‐ice, this species would be especially sensitive to climatic or oceanic changes that reduce the extent of sea‐ice cover or the timing of formation of coastal polynyas.
Abstract:The nototheniid Pleuragramma antarcticum (Boulenger, 1902), is the dominant pelagic fish in waters of the continental shelf in High Antarctic regions. Larvae and juveniles of this species comprise the majority of ichthyoplankton at many locations around Antarctica including the Weddell Sea and the western Ross Sea, where it may amount to 98% of the ichthyoplankton. Its life cycle has been the subject of a number of studies but spawning and embryological development are still uncertain. Eggs with embryos and newly hatched larvae of P. antarcticum were collected in November 2002 near the Italian Antarctic station at Terra Nova Bay through holes drilled in the sea ice. Eggs and yolk-sac larvae were floating among the platelet ice below the solid cap of congelation ice. Eggs were 2.2-2.5 mm in diameter and contained embryos at an advanced stage of development. Hatching occurred from mid-November onwards, and newly hatched larvae averaged 9.3 mm SL. This paper provides the detailed description of embryos and newly hatched larvae in terms of pigmentation pattern and morphometric characteristics, thus allowing a significant advance in our understanding of the early life history of P. antarcticum in the Ross Sea, and extending the knowledge of the life cycle of this key Antarctic species.
The Antarctic silverfishPleuragramma antarcticumBoulenger is the dominant fish species in the high Antarctic zone, playing a key role in the Ross Sea midwater shelf ecosystem. Unlike other notothenioids, it is holoplanktonic species, spending its entire life cycle in the water column. Early life stages ofP. antarcticumare generally found in the upper 200 m and their spatial distribution is largely affected by water masses and general circulation. To understand better the mechanisms involved in the geographical distribution of the Antarctic silverfish within the western Ross Sea, an analysis of abundance and distribution was carried out in relation to oceanographic conditions. Samples were collected in summer during the 1998, 2000 and 2004 Italian cruises, covering the majority of the western sector of the Ross Sea. Overall 127 stations were sampled using standard plankton nets for biological samples and CTD and XBT to record abiotic parameters. Although all surveys were in December–January, the yearly results differed in terms of relative abundance of larval developmental stages and of oceanographic characteristics. The 1997–98 samples were characterized by very low abundance overall and by the virtual absence of early larvae. In summers 1999–2000 and 2003–04 the abundance ofP. antarcticumwas one order of magnitude higher than in the earlier season. In 1999–2000 catches were mainly composed of pre-flexion larvae and late postlarvae, while in 2003–04 catches were made up of pre-flexion larvae and juveniles. In January 2000 the Ross Sea summer polynya was fully open as the pack ice was almost completely melted, whereas in January 1998 and 2004 the opening of the polynya was considerably delayed. As a consequence, a delay in phytoplankton blooms and a decrease in primary production were observed in the summer seasons 1998 and 2004 with respect to 2000. The spatial distribution of early life stages, that were confined to the continental shelf and shelf break of the Ross Sea, generally appeared to be positively influenced by transition zones (oceanographic fronts). In addition, most of catches were recorded on or in close proximity to the banks (Pennell, Mawson, Ross and Crary) that characterize the continental shelf of the Ross Sea. On the basis of present findings and literature data, a link between the general circulation in the western Ross Sea and the distribution pattern of the early life stages ofP. antarcticumhas been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.