Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.
Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of preterm infants has gained attention in the last decades. In this study, we analyze the complexity of neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how EEG complexity evolves during electrocortical maturation and whether complexity features can be used to classify sleep stages. First , we developed a regression model that estimates the postmenstrual age (PMA) using a combination of complexity features. Then, these features are used to build a sleep stage classifier. The analysis is performed on a database consisting of 97 EEG recordings from 26 prematurely born infants, recorded between 27 and 42 weeks PMA. The results of the regression analysis revealed a significant positive correlation between the EEG complexity and the infant's age. Moreover, the PMA of the neonate could be estimated with a root mean squared error of 1.88 weeks. The sleep stage classifier was able to discriminate quiet sleep from nonquiet sleep with an area under the curve (AUC) of 90%. These results suggest that the complexity of the brain dynamics is a highly useful index for brain maturation quantification and neonatal sleep stage classification.
Our findings suggest that CNN is a suitable and fast approach to classify neonatal sleep stages in preterm infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.