A superalloy traditionally offers excellent mechanical strength, resistance to thermal creep deformation, good surface stability and resistance to corrosion or oxidation. However, a superalloy often also needs performance in terms of fretting resistance. Experimental results regarding fretting wear and contact properties of the superalloy René 80 are illustrated and discussed. The widespread applications of superalloys in jointing with friction as in the jointing of a turbine blade, is the main motivation for characterizing their fretting behaviour. The fretting experiments were performed at 100 Hz for two temperatures (600, 800˝C), and two sliding amplitudes (30, 60 µm). These temperatures and strokes are typical at the medium stage of a low-pressure gas turbine. Wear volume and the contact properties such as friction coefficient and tangential contact stiffness were measured and analysed. Results show that the lowest friction coefficient was measured at the temperature of 800˝C. This temperature hence appears to be an optimum working condition for the fretting wear of René 80. With regard to wear mechanism, a fundamental role of the sliding amplitude was found. In particular, the ratio between the sliding amplitude and the characteristic contact length has a significant influence upon the oxide growth on contact surfaces.
A library of poly(ether urethane)-based supramolecular hydrogels was designed, showing quick gelation, no phase separation, remarkable mechanical and self-healing properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.