Buildings portion in global energy consumption is 40%, and in the building envelope, the roof is a crucial point for improving indoor temperature, especially in the last and second last floors. Studies show that green roofs can be applied to moderate roof temperature and affect the indoor temperature in summer and winter. However, the performance of green roofs depends on several parameters such as climate, irrigation, layer materials, and thickness. In this context, the present research deals with a comprehensive experimental analysis of different thermal impacts of green roofs in summer and winter in a Mediterranean climate. Measurements carried out in one year in three different types of green roofs with different thicknesses, layers, and with and without the insulation layer. The analysis determined the possible period that indoor cooling or heating might be required with and without green roofs and demonstrated the positive impact of green roofs in moderating the roof temperature and temperature fluctuations, which in summer was remarkable. In conclusion, since in the Mediterranean climate, the thermal differences between green roofs and conventional roofs in summer are much higher than winter, it seems that the green roof without an insulation layer would show better performance.
Sea hazards are increasingly threatening worldwide coastal areas, which are among the most strategic resources of the Earth in supporting human population, economy and the environment. These hazards enhance erosion processes and flooding events, producing severe socio-economic impacts and posing a challenge to ocean engineers and stakeholders in finding the optimal strategy to protect both the coastal communities and the health of the environment. The impact of coastal hazards is actually worsened not only by an enhancing rate of relative sea level rise and storminess driven by climate changes, but also by increasing urban pressure related to the development of the sea economy. With regard to larger environmental awareness and climate change adaptation needs, the present study focuses on a stepwise approach that supports the actions for coastal protection at Calabaia Beach, which is located in the Marine Experimental Station of Capo Tirone (Cosenza, Italy). These actions first aim to protect humans and coastal assets, then to restore the environment and the local habitat, overcoming the need for the emergency interventions carried out in the last decades and pointing out that healthy ecosystems are more productive and support a sustainable marine economy (“Blue Growth”).
Abstract:Proper water resources management involves the analysis and resolution of various optimization problems according to climate change effects on the availability and distribution of the resources themselves. Specifically, these conditions require the identification of new resource allocation optimization solutions capable of taking into account the water resource losses due to climate change scenarios. As is well known, Southern Italy is a region that is potentially very sensitive to climate change. In this paper, a 1717 km 2 area, corresponding to the province of Crotone, was analyzed as a study case. This area is characterized by a sufficient availability of resources as a whole as compared to the needs of the users, but has an unbalanced distribution of water through its various systems. After identifying water resource allocations in detail for this area, an optimization solution accounting for the expected reduced availability of water resources in the context of climate change was created and was compared with the optimization solution for current water availability.
The role of the industrial sector in total greenhouse gas (GHG) emissions and resource consumption is well-known, and many industrial activities may have a negative environmental impact. The solution to decreasing the negative effects cannot be effective without the consideration of sustainable development. There are several methods for sustainability evaluation, such as tools based on products, processes, or plants besides supply chain or life cycle analysis, and there are different rating systems suggesting 80, 140, or more indicators for assessment. The critical point is the limits such as required techniques and budget in using all indicators for all factories in the beginning. Moreover, the weight of each indicator might change based on the selected alternative that it is not a fixed value and could change in a new case study. In this regard, to determine the impact and weight of different indicators in sustainable factories, a multi-layer Triangular Fuzzy Analytic Hierarchy Process (TFAHP) approach was developed, and the application of the method was described and verified. The defined layers are six; for each layer, the pairwise comparison matrix was developed, and the total aggregated score concerning the sustainability goal for each alternative was calculated that shows the Relative Importance Coefficient (RIC). The method is formulated in a way that allows adding the new indicators in all layers as the verification shows, and thus, there are no limits for using any green rating systems. Therefore, the presented approach by TFAHP would provide an additional tool toward the sustainable development of factories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.