Derailed cytokine and immune cell networks account for organ damage and clinical severity of COVID-19 [1][2][3][4] . Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and accompanied by a senescence-associated secretory phenotype (SASP), composed of pro-inflammatory cytokines, extracellular matrix-active factors and pro-coagulatory mediators [5][6][7] . COVID-19 patients displayed markers of senescence in their airway mucosa in situ and elevated serum levels of SASP factors. Mirroring COVID-19 hallmark features such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue 1,8,9 , in vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, neutrophil extracellular trap (NET) formation as well as activation of platelets and the clotting cascade in response to supernatant of VIS cells, including SARS-CoV-2-induced senescence. Senolytics such as Navitoclax and Dasatinib/Quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-driven hamster and mouse models. Our findings mark VIS as pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest senolytic targeting of virus-infected cells as a novel treatment option against SARS-CoV-2 and perhaps other viral infections.The pandemic human pathogenic SARS-CoV-2 coronavirus causes upper respiratory infections and subsequently COVID-19 lung disease that may get further complicated by septic multi-organ failure and comes with significant mortality 10,11 . Escalating immune activation with massive cytokine release seems to drive severe COVID-19 1-3 , possibly more than the virus infection itself. Mechanisms of viral
The cytoplasmically oriented monotopic integral membrane protein stomatin forms high-order oligomers and associates with lipid rafts. To characterize the domains that are involved in oligomerization and detergent-resistant membrane (DRM) association, we expressed truncation and point mutants of stomatin and analyzed their size and buoyancy by ultracentrifugation methods. A small C-terminal region of stomatin that is largely hydrophobic, Ser-Thr-Ile-Val-PhePro-Leu-Pro-Ile (residues 264 -272), proved to be crucial for oligomerization, whereas the N-terminal domain (residues 1-20) and the last 12 C-terminal amino acids (residues 276 -287) were not essential. The introduction of alanine substitutions in the region 264 -272 resulted in the appearance of monomers. Remarkably, only three of these residues, Ile-ValPhe (residues 266 -268), were found to be indispensable for the DRM association. Interestingly, the exchange of Pro-269 and to some extent the residues 270 -272, which are essential for oligomerization, did not affect the DRM association of stomatin. This suggests that the formation of oligomers is not necessary for the association of stomatin with DRMs. Internal deletions near the membrane anchoring domain resulted in the formation of intermediate size oligomers suggesting a conformational interdependence of large parts of the C-terminal region. Fluorescence recovery after photobleaching analysis of the tagged, monomeric, non-DRM mutant ST-(1-262)-green fluorescent protein and wild type stomatin StomGFP showed a significantly higher lateral mobility of the truncation mutant in the plasma membrane suggesting a membrane interaction of the respective C-terminal region also in vivo.The 31-kDa integral protein stomatin was first identified as an abundant component of the human erythrocyte membrane (1-3); however, it is also widely expressed in various tissues and cell lines (1, 3-5). The primary structure of 287 amino acids (3, 6) is characterized by a highly charged 24-residue N terminus followed by a 29-residue hydrophobic sequence that is most probably associated with the membrane and the large C-terminal region containing 234 residues. Stomatin has an unusual topology (7), similar to caveolin (8), with the hydrophobic domain forming a putative "hairpin loop" in the lipid bilayer and the N and C termini facing the cytoplasm. Palmitoylation of the cysteine residues Cys-29 and Cys-86 further increases the affinity of stomatin for the membrane (9). The association of stomatin with the lipid droplet phospholipid monolayer (10)
Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.