Background:The clinical presentation of European patients with mild-to-moderate infection is still unknown.Objective: To study the clinical presentation of Covid-19 in Europe. Methods:Patients with positive diagnosis of Covid-19 were recruited from 18 European hospitals.Epidemiological and clinical data were obtained through a standardized questionnaire. Bayesian analysis was used for analyzing the relationship between outcomes.Results: 1,420 patients completed the study (962 females, 30.7% of health care workers). The mean age of patients was 39.17±12.09 years. The most common symptoms were headache (70.3%), loss of smell (70.2%), nasal obstruction (67.8%), cough (63.2%), asthenia (63.3%), myalgia (62.5%), rhinorrhea (60.1%), gustatory dysfunction (54.2%) and sore throat (52.9%).Fever was reported by on 45.4%. The mean duration of Covid-19 symptoms of mild-to-moderate cured patients was 11.5±5.7 days. The prevalence of symptoms significantly varied according to age and sex. Young patients more frequently had ear, nose, and throat complaints, whereas elderly individuals often presented fever, fatigue and loss of appetite. Loss of smell, headache, nasal obstruction and fatigue were more prevalent in female patients. The loss of smell was a key symptom of mild-to-moderate Covid19 patients and was not associated with nasal obstruction and rhinorrhea. Loss of smell persisted at least 7 days after the disease in 37.5% of cured patients. Conclusion:The clinical presentation of mild-to-moderate Covid-19 substantially varies according to the age and the sex characteristics of patients. Olfactory dysfunction seems to be an important underestimated symptom of mild-to-moderate Covid-19 that needs to be recognized as such by the WHO.
While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
The primary function of thyroid gland is to metabolize iodide by synthesizing thyroid hormones that are critical regulators of growth, development and metabolism in virtually all tissues. To date, research on thyroid morphogenesis was missing an efficient stem-cell model system which allows to recapitulate in vitro the molecular and morphogenic events regulating thyroid follicular cells differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2.1 and PAX8 is sufficient to direct mouse embryonic stem-cells (mESC) differentiation into thyroid follicular cells which organized into three-dimensional follicular structures when treated with thyrotropin. Those in vitro derived follicles showed significant iodide organification activity. Importantly, when grafted in vivo into athyreoid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mESC can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.