▪ Abstract The Local Group dwarf galaxies offer a unique window to the detailed properties of the most common type of galaxy in the Universe. In this review, I update the census of Local Group dwarfs based on the most recent distance and radial velocity determinations. I then discuss the detailed properties of this sample, including (a) the integrated photometric parameters and optical structures of these galaxies, (b) the content, nature, and distribution of their interstellar medium (ISM), (c) their heavy-element abundances derived from both stars and nebulae, (d) the complex and varied star-formation histories of these dwarfs, (e) their internal kinematics, stressing the relevance of these galaxies to the “dark matter problem” and to alternative interpretations, and (f) evidence for past, ongoing, and future interactions of these dwarfs with other galaxies in the Local Group and beyond. To complement the discussion and to serve as a foundation for future work, I present an extensive set of basic observational data in tables that summarize much of what we know and do not know about these nearby dwarfs. Our understanding of these galaxies has grown impressively in the past decade, but fundamental puzzles remain that will keep the Local Group at the forefront of galaxy evolution studies for some time.
We apply the Jeans equation to estimate masses for eight of the brightest dwarf spheroidal (dSph) galaxies. For Fornax, the dSph with the largest kinematic data set, we obtain a model-independent constraint on the maximum-circular velocity, V max = 18 +5 −3 km s −1 . Although we obtain only lowerlimits of V max 10 km s −1 for the remaining dSphs, we find that in all cases the enclosed mass at the projected half-light radius is well constrained and robust to a wide range of halo models and velocity anisotropies. We derive a simple analytic formula that estimates M (r half ) accurately with respect to results from the full Jeans analysis. Applying this formula to the entire population of Local Group dSphs with published kinematic data, we demonstrate a correlation such that M (r half ) ∝ r 1.4±0.4 half , or in terms of the mean density interior to the half-light radius, ρ ∝ r −1.6±0.4half . This relation is driven by the fact that the dSph data exhibit a correlation between global velocity dispersion and half-light radius. We argue that tidal forces are unlikely to have introduced this relation, but tides may have increased the scatter and/or altered the slope. While the data are well described by mass profiles ranging over a factor of 2 in normalization (V max ∼ 10 − 20 km s −1 ), we consider the hypothesis that all dSphs are embedded within a "universal" dark matter halo. We show that in addition to the power law M ∝ r 1.4 , viable candidates include a cuspy "NFW" halo with V max ∼ 15 km s −1 and scale radius r 0 ∼ 800 pc, as well as a cored halo with V max ∼ 13 km s −1 and r 0 ∼ 150 pc. Finally, assuming that their measured velocity dispersions accurately reflect their masses, the smallest dSphs now allow us to resolve dSph densities at radii as small as a few tens of pc. At these small scales we find mean densities as large as ρ 5M ⊙ pc −3 ( 200GeV cm −3 ).
No abstract
The design considerations and operational features of DoPHOT, a point-spread function (PSF) fitting photometry program, are described. Some relevant details of the PSF fitting are discussed. The quality of the photometry returned by dophot is assessed via reductions of an "artificial" globular cluster generated from a list of stars with known magnitudes and colors. Results from comparative tests between dophot and DAOPHOT using this synthetic cluster and real data are also described.
The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ∼ 10 4 in luminosity and star formation rate. The survey data consists of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m F 475W = 28.0 mag, m F 606W = 27.3 mag, and m F 814W = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump (RC). The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both the ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.