Biological inorganic carbon fixation proceeds through a number of fundamentally different autotrophic pathways that are defined by specific key enzymatic reactions. Detection of the enzymatic genes in (meta)genomes is widely used to estimate the contribution of individual organisms or communities to primary production. Here we show that the sulfur-reducing anaerobic deltaproteobacterium is capable of both acetate oxidation and autotrophic carbon fixation, with the tricarboxylic acid cycle operating either in the oxidative or reductive direction, respectively. Under autotrophic conditions, the enzyme citrate synthase cleaves citrate adenosine triphosphate independently into acetyl coenzyme A and oxaloacetate, a reaction that has been regarded as impossible under physiological conditions. Because this overlooked, energetically efficient carbon fixation pathway lacks key enzymes, it may function unnoticed in many organisms, making bioinformatical predictions difficult, if not impossible.
In the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and 'Aromatoleum'. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA-and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested.
The denitrifying betaproteobacterium Sterolibacterium denitrificans serves as model organism for studying the oxygen-independent degradation of cholesterol. Here, we demonstrate its capability of degrading various globally abundant side chain containing zoo-, phyto- and mycosterols. We provide the complete genome that empowered an integrated genomics/proteomics/metabolomics approach, accompanied by the characterization of a characteristic enzyme of steroid side chain degradation. The results indicate that individual molybdopterin-containing steroid dehydrogenases are involved in C25-hydroxylations of steroids with different isoprenoid side chains, followed by the unusual conversion to C26-oic acids. Side chain degradation to androsta-1,4-diene-3,17-dione (ADD) via aldolytic C-C bond cleavages involves acyl-CoA synthetases/dehydrogenases specific for the respective 26-, 24- and 22-oic acids/-oyl-CoAs and promiscuous MaoC-like enoyl-CoA hydratases, aldolases and aldehyde dehydrogenases. Degradation of rings A and B depends on gene products uniquely found in anaerobic steroid degraders, which after hydrolytic cleavage of ring A, again involves CoA-ester intermediates. The degradation of the remaining CD rings via hydrolytic cleavage appears to be highly similar in aerobic and anaerobic bacteria. Anaerobic cholesterol degradation employs a composite repertoire of more than 40 genes partially known from aerobic degradation in gammaproteobacteria/actinobacteria, supplemented by unique genes that are required to circumvent oxygenase-dependent reactions.
The degradation of the industrially produced and environmentally relevant phthalate esters by microorganisms is initiated by the hydrolysis to alcohols and phthalate (1,2-dicarboxybenzene). In the absence of oxygen the further degradation of phthalate proceeds via activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report on the first purification and characterization of a phthaloyl-CoA decarboxylase (PCD) from the denitrifying Thauera chlorobenzoica. Hexameric PCD belongs to the UbiD-family of (de)carboxylases and contains prenylated FMN (prFMN), K and, unlike other UbiD-like enzymes, Fe as cofactors. The latter is suggested to be involved in oxygen-independent electron-transfer during oxidative prFMN maturation. Either oxidation to the Fe -state in air or removal of K by desalting resulted in >92% loss of both, prFMN and decarboxylation activity suggesting the presence of an active site prFMN/Fe /K -complex in PCD. The PCD-catalysed reaction was essentially irreversible: neither carboxylation of benzoyl-CoA in the presence of 2 M bicarbonate, nor an isotope exchange of phthaloyl-CoA with C-bicarbonate was observed. PCD differs in many aspects from prFMN-containing UbiD-like decarboxylases and serves as a biochemically accessible model for the large number of UbiD-like (de)carboxylases that play key roles in the anaerobic degradation of environmentally relevant aromatic pollutants.
Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.