It is well known that producers of agricultural products do not able to capture most of the value from what they grow. As such, it is important for producers to be attuned to the various factors that impact the viability of their products. One such potential avenue for coffee producers is developing a strong awareness of profitability across their respective geographic regions. This research presents a fine-scale geospatial profitability model for coffee production using the test case of the Jamaican Coffee Industry, a sector which once guaranteed profitability but now presents variable (often losing) returns for many producers, this research presents a cost-surface model for coffee production in the island of Jamaica. Results indicated large scale profitability in the 2016–2017 coffee year but limited profitability in the 2019–2019 coffee year, highlighting the important role of revenue fluctuation in island-wide profitability. Results underscore importance of scenario planning in the coffee production cycle. By understanding the spatial properties of profitability producers will obtain better decision-making insight for production and management decisions in the coffee industry around the world. The geospatial profitability model establishes a baseline approach that can be accessed by industry stakeholders of varying technological capacities.
Jamaica produces one of the most expensive coffees on the global market. The local specialty coffee industry plays a significant role in the island’s economy and also contributes to the livelihood of smallholders—the majority of whom operate the industry’s coffee farms. While climate model projections suggest that Jamaica will continue to experience a warming and drying trend, no study has assessed the future impacts of changing climatic patterns on local coffee-growing areas. This research developed a number of geospatial processing models within the ArcMap software platform to model current coffee suitability and future crop suitability across three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5) and three future time periods (2021–2040, 2041–2060, and 2081–2100). The results validated current locations of coffee production and revealed that there was an observable decrease in coffee suitability across the island, across all SSP scenarios and time periods under study. Most growing regions were projected to experience declines in production suitability of at least 10%, with the most severe changes occurring in non-Blue Mountain regions under the SSP5-8.5 scenario. Implications of this projected suitability change range from decreased production volumes, increased price volatility, and disruption to market operations and livelihood incomes. The paper’s findings offer stakeholders within Jamaica’s coffee industry the opportunity to develop targeted adaptation planning initiatives, and point to the need for concrete decisions concerning future investment pathways for the industry. It also provides insight into other tropical coffee-growing regions around the world that are facing the challenges associated with climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.