Since eroded sediments are produced from different sources distributed throughout a basin, sediment delivery processes at basin scale have to be modelled by a spatially distributed approach. In this paper a new theoretically based relationship is proposed for evaluating the sediment delivery ratio, SDR { , of each morphological unit, i, into which a basin is divided. Then, using the sediment balance equation written for the basin outlet, a relationship between the basin sediment delivery ratio, SDR W and the SDR t is deduced. This relationship is shown to be independent of the soil erosion model used. Finally, a morphological criterion for estimating a coefficient, /3, is proposed. Les processus d'apport de sédiments à l'échelle du bassin versantRésumé Comme les sédiments sont produits dans différentes zones (sources des sédiments) réparties à travers un bassin versant, les processus d'apport de sédiments qui se déroulent dans ce bassin versant doivent être simulés par un modèle mathématique utilisant des données réparties dans l'espace. Dans la présente étude, les auteurs proposent d'abord une nouvelle équation théorique permettant d'estimer le coefficient de production de sédiments SDR ( de chacune des unités morphologiques selon lesquelles le bassin versant a été divisé. Ensuite, en utilisant l'équation de bilan des sédiments relative à l'exutoire du bassin, les auteurs établissent une relation entre le coefficient d'apport de sédiments du bassin versant SDR W et le coefficient SDR { . On peut démontrer que cette relation est indépendante du modèle mathématique utilisé pour estimer l'érosion. Enfin, un critère morphologique est proposé pour estimer un coefficient, (3.
Soil erosion processes in vineyards, beyond surface runoff and sediment transport, have a strong effect on soil organic carbon (SOC) loss and redistribution along the slope. Variation in SOC across the landscape can determine differences in soil fertility and vine vigor. The goal of this research was to analyze the interactions among vines vigor, sediment delivery and SOC in a sloping vineyard located in Sicily. Six pedons were studied along the slope by digging 6 pits up to 60cm depth. Soil was sampled every 10cm and SOC, water extractable organic carbon (WEOC) and specific ultraviolet absorbance (SUVA) were analyzed. Erosion rates, detachment and deposition areas were measured by the pole height method which allowed mapping of the soil redistribution. The vigor of vegetation, expressed as Normalized Difference Vegetation Index (NDVI), derived from high-resolution satellite multispectral data, was compared with measured pruning weight. Results confirmed that soil erosion, sediment redistribution and SOC across the slope was strongly affected by topographic features, slope and curvature. The erosion rate was 16Mghay since the time of planting (6years). SOC redistribution was strongly correlated with the detachment or deposition areas as highlighted by pole height measurements. The off-farm SOC loss over six years amounted to 1.2MgCha. SUVA values, which indicate hydrophobic material rich in aromatic constituents of WEOC, decreased significantly along the slope, demonstrating that WEOC in the detachment site is more stable in comparison to deposition sites. The plant vigor was strongly correlated with WEOC constituents. Results demonstrated that high resolution passive remote sensing data combined with soil and plant analyses can survey areas with contrasting SOC, soil fertility, soil erosion and plant vigor. This will allow monitoring of soil erosion and degradation risk areas and support decision-makers in developing measures for friendly environmental management.
a b s t r a c tCorrect estimation of crop actual transpiration plays a key-role in precision irrigation scheduling, since crop growth and yield are associated to the water passing through the crop.Objective of the work was to assess how the combined use of micro-meteorological techniques (eddy covariance, EC) and physiological measurements (sap flow, SF) allows a better comprehension of the processes involving in the Soil-Plant-Atmosphere continuum.To this aim, an experimental dataset of actual evapotranspiration, plant transpiration, and soil water content measurements was collected in an olive orchard during the midseason phenological period of 2009 and 2010. It was demonstrated that the joint use of EC and SF techniques is effective to evaluate the components of actual evapotranspiration in an olive orchard characterized by sparse vegetation and a significant fraction of exposed bare soil.The availability of simultaneous soil water content measurements allowed to estimate the crop coefficients and to assess a simple crop water stress index, depending on actual transpiration that can be evaluated even in the absence of direct measurements of actual transpiration.The crop coefficients experimentally determined resulted very similar to those previously evaluated; in particular, in the absence of water stress, a seasonal average value of about 0.65 was obtained for the "single" crop coefficient, whereas values of a 0.34 and 0.41 were observed under limited water availability in the root zone.The comparison between the values of crop water stress index evaluated during the investigated periods evidenced systematically lower values (less crop water stress) in the first year compared to the second, according to the general trend of soil waters content in the root zone.Further researches are however necessary to extent the experimental dataset to periods characterized by values of soil evaporation higher than those observed, in order to verify the crop coefficients even under different conditions than those investigated.
Abstract. Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB) and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), nearinfrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage) and the twosources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK) campaign in 2005 have been used. The results of this investigation seem to prove a slightly better agreement between SWAP and TSEB for some fields of the study area. Further investigations are programmed in order to confirm these indications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.