The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.
In this paper, the non-invasive system MASSIMO is presented for the monitoring and the seismic vulnerability mitigation of the cultural heritage. It integrates ground-based, airborne and spaceborne remote sensing tools with geophysical and in situ surveys to provide the multi-spatial (regional, urban and building scales) and multi-temporal (long-term, short-term, near-real-time and real-time scales) monitoring of test areas and buildings. The measurements are integrated through web-based GIS and 3D visual platforms to support decision-making stakeholders involved in urban planning and structural requalification. An application of this system is presented over the Calabria region for the town of Cosenza and a test historical complex.
<p><em>We used the moderate-magnitude aftershocks succeeding to the 2016 August 24<sup>th</sup>, Mw = 6.0, Amatrice (Italy) mainshok to asses, specially during an ongoing seismic sequence, the soil-structure interaction where cultural Heritage is involved. We have chosen as case study the</em><em> San Giovanni Battista</em><em> church (A.D. 1039) in Acquasanta Terme town, about 20 Km northeast of Amatrice. First of all we studied the soil shaking features in order to characterize the input to the monument. Then, using the recordings in the church, we tried to figure out how the input seismic energy is distributed over the different monument parts. Some preliminary results are shown and discussed.</em></p><p><em><br /></em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.