In COPD exacerbations with moderate to severe hypercapnic encephalopathy, the use of NPPV performed by an experienced team compared to CMV leads to similar short and long-term survivals with a reduced nosocomial infection rate and duration of ventilation.
IntroductionInefficient clearance of copious respiratory secretion is a cause of non-invasive positive pressure ventilation (NPPV) failure, especially in chronic respiratory patients with community-acquired-pneumonia (CAP) and impaired consciousness. We postulated that in such a clinical scenario, when intubation and conventional mechanical ventilation (CMV) are strongly recommended, the suction of secretions with fiberoptic bronchoscopy (FBO) may increase the chance of NPPV success. The objective of this pilot study was, firstly, to verify the safety and effectiveness of early FBO during NPPV and, secondly, to compare the hospital outcomes of this strategy versus a CMV-based strategy in patients with decompensated chronic obstructive pulmonary disease (COPD) due to CAP who are not appropriate candidates for NPPV because of inefficient mucous clearance and hypercapnic encephalopathy (HE).MethodsThis is a 12-month prospective matched case-control study performed in one respiratory semi-intensive care unit (RSICU) with expertise in NPPV and in one intensive care unit (ICU). Fifteen acutely decompensated COPD patients with copious secretion retention and HE due to CAP undergoing NPPV in RSICU, and 15 controls (matched for arterial blood gases, acute physiology and chronic health evaluation score III, Kelly-Matthay scale, pneumonia extension and severity) receiving CMV in the ICU were studied.ResultsTwo hours of NPPV significantly improved arterial blood gases, Kelly and cough efficiency scores without FBO-related complications. NPPV avoided intubation in 12/15 patients (80%). Improvement in arterial blood gases was similar in the two groups, except for a greater PaO2/fraction of inspired oxygen ratio with CMV. The rates of overall and septic complications, and of tracheostomy were lower in the NPPV group (20%, 20%, and 0%) versus the CMV group (80%, 60%, and 40%; P < 0.05). Hospital mortality, duration of hospitalisation and duration of ventilation were similar in the two groups.ConclusionsIn patients with decompensated COPD due to CAP who are candidates for CMV because of HE and inability to clear copious secretions, NPPV with early therapeutic FBO performed by an experienced team is a feasible, safe and effective alternative strategy.
OBJECTIVE:This study tried to evaluate whether a methacholine test may be influenced by the seasons.METHODS:We considered 4826 consecutive subjects with normal spirometry (50.53% males; age: 35.1±16.2; forced expiratory volume in one second: 99.5±13.0%) who underwent a methacholine test for suspected asthma symptoms between 2000 and 2010. They were subdivided into four groups, like the seasons, according to the test dates.RESULTS:A total of 1981 (41%) resulted normal (no PD20 was obtained with 2400 μg of methacholine); the others showed a mean LogPD20 of 2.52±0.5 μg. The number of subjects with bronchial hyper-responsiveness (BHR) found in autumn (789, 62.3%) was higher than in summer (583, 56.7%; P=0.03). A higher number of females and overweight/obese subjects showed a BHR in autumn compared with the other seasons. The spring mean LogPD20 value (2.48±0.48 μg) was lower if compared with the one measured in summer (2.59±0.49 μg; P=0.05). LogPD20 value was lower in females and non-smokers in spring compared with summer (P<0.05). Overweight/obese non-smokers showed a lower LogPD20 in spring and autumn compared with that in summer (P<0.05). Autumn was a risk factor (OR: 1.378; P=0.001) for BHR (using a PD20 <2 400 μg as BHR limit), while spring (OR: 1.330; P=0.021) and autumn (OR: 1.331; P=0.020) were risk factors for a more severe BHR (using a PD20 <400 μg as BHR limit).CONCLUSION:There was a higher probability of finding BHR in outpatients with suspected asthma in autumn and spring compared with summer. Spring is the season where BHR may be more severe. Females and overweight/obese subjects were those mainly involved in this seasonal variability of BHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.