UCP1-Tg mice with ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) are a model of improved substrate metabolism and increased longevity. Analysis of myokine expression showed an induction of fibroblast growth factor 21 (FGF21) in SM, resulting in approximately fivefold elevated circulating FGF21 in UCP1-Tg mice. Despite a reduced muscle mass, UCP1-Tg mice showed no evidence for a myopathy or muscle autophagy deficiency but an activation of integrated stress response (ISR; eIF2α/ATF4) in SM. Targeting mitochondrial function in vitro by treating C2C12 myoblasts with the uncoupler FCCP resulted in a dose-dependent activation of ISR, which was associated with increased expression of FGF21, which was also observed by treatment with respiratory chain inhibitors antimycin A and myxothiazol. The cofactor required for FGF21 action, β-klotho, was expressed in white adipose tissue (WAT) of UCP1-Tg mice, which showed an increased browning of WAT similar to what occurred in altered adipocyte morphology, increased brown adipocyte markers (UCP1, CIDEA), lipolysis (HSL phosphorylation), and respiratory capacity. Importantly, treatment of primary white adipocytes with serum of transgenic mice resulted in increased UCP1 expression. Additionally, UCP1-Tg mice showed reduced body length through the suppressed IGF-I-GH axis and decreased bone mass. We conclude that the induction of FGF21 as a myokine is coupled to disturbance of mitochondrial function and ISR activation in SM. FGF21 released from SM has endocrine effects leading to increased browning of WAT and can explain the healthy metabolic phenotype of UCP1-Tg mice. These results confirm muscle as an important endocrine regulator of whole body metabolism.
Brown adipose tissue (BAT)-dependent thermogenesis and its suggested augmenting hormone, FGF21, are potential therapeutic targets in current obesity and diabetes research. Here, we studied the role of UCP1 and FGF21 for metabolic homeostasis in the cold and dissected underlying molecular mechanisms using UCP1-FGF21 double-knockout mice. We report that neither UCP1 nor FGF21, nor even compensatory increases of FGF21 serum levels in UCP1 knockout mice, are required for defense of body temperature or for maintenance of energy metabolism and body weight. Remarkably, cold-induced browning of inguinal white adipose tissue (iWAT) is FGF21 independent. Global RNA sequencing reveals major changes in response to UCP1- but not FGF21-ablation in BAT, iWAT, and muscle. Markers of mitochondrial failure and inflammation are observed in BAT, but in particular the enhanced metabolic reprogramming in iWAT supports the thermogenic role of UCP1 and excludes an important thermogenic role of endogenous FGF21 in normal cold acclimation.
Mitochondrial dysfunction promotes metabolic stress responses in a cell‐autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1‐TG) with compromised muscle‐specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1‐TG mice show a skeletal muscle‐specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1‐TG mice does not affect muscle wasting or transcriptional cell‐autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress‐induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15‐dependent daytime‐restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress‐induced GDF15 in the regulation of systemic energy metabolism.
Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/ 1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPHgenerating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stresssignaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle.-Ost, M., Keipert, S., van Schothorst, E. M., Donner, V., van der Stelt, I., Kipp, A. P., Petzke, K.-J., Jove, M., Pamplona, R., Portero-Otin, M., Keijer, J., Klaus, S. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314-1328 (2015). www.fasebj.org Key Words: amino acid metabolism • metabolic reprogramming • mitochondrial myopathy • oxidative stress tolerance • polyamines SKELETAL MUSCLE (SM) WASTING, or atrophy, occurs as a physiologic response to muscle disuse, fasting, starvation, and aging; it also occurs in a wide range of systemic diseases, including cancer, denervation, and diabetes mellitus (1-4). Numerous studies connected alterations in mitochondrial function to muscle atrophy, focusing on mitochondrial respiratory chain dysfunction or formation of reactive oxygen species (ROS) (5), as mitochondria represent an important site of cellular ROS production (6). Mitochondria are key dynamic organelles that not only provide ATP via oxidative phosphorylation but also are involved in the cellular integrated stress response (7) and in mitohormesis, a molecular adaptation and retrograde response resulting in stress resistance (8).We previously demonstrated in a transgenic mouse model with alterations in SM mitochondrial function (uncoupling protein 1 [UCP1] transgenic [TG] mice [UCP1-TG], with ectopic expression of UCP1 in SM) an elevated endogenous antioxidant defense system, induced integrated stress response but also compromised mitochondrial respiratory chain capacity (9) and a strong reduction in SM mass (10). In contrast...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.