The aim of this paper is to investigate which between the entropy and resilience indices represents a better indirect measure of reliability in the framework of water distribution network design. The methodology adopted consisted of (a) multi-objective optimizations performed in order to minimize costs and maximize reliability, expressed by means of one of the indirect indices at time; (b) retrospective performance assessment of the solutions of Pareto fronts obtained. Two case studies of different topological complexity were considered. Results showed that indices based on energetic concepts (resilience and modified resilience) represent a better compact estimate of reliability than the entropy
Besides benefits associated to increased water availability for irrigation, reuse projects of urban water can also provide positive environmental impacts, as they contribute to improve water quality of the receiving bodies by diverting wastewater from their outlet. This represents a typical win-win situation where significant synergies can be achieved between urban and agricultural sector, and the environment. These favorable conditions, however, do not necessarily imply that water reuse is either feasible from an economic perspective nor that the underlying supply chain is going to be triggered, if certain conditions are not met. Cost-Benefit Analysis (CBA) is considered a sound, theoretically well-grounded tool to analyze the financial and economical sustainability of an investment. The paper presents the CBA of an existing reuse scheme in Puglia, in southern Italy, reclaiming wastewater for irrigation from a coastal area with growing recreational, beach-related activities. Supported by operational data, official statistics and sector documents, the CBA reveals that in almost all scenarios the existence of environmental benefits must be invoked in order to consider the project economically sustainable. Coherent screening of the different impacts, isolating the ones that are applicable to the specific case-study, shows that these benefits are mainly non-use benefits related to the aesthetic enjoyment of clean water in the reclaimed stretch of coastline where wastewater discharge may no longer take place or take place in a way that significantly reduce seawater pollution.
This paper compares two generators of yearly water availabilities from sources located at multiple sites with regard to their ability to reproduce the characteristics of historical critical periods and to provide reliable results in terms of the return period of critical sequences of different length. The two models are a novel multi-site Markov mixture model explicitly accounting for drought occurrences and a multivariate ARMA. In the case of the multisite Markov mixture model parameter estimation is limited to a search in the parameter space guided by the value of parameter k to show the sensitivity of the model to this parameter. Application to two of the longest time series of streamflows available in Sicily (Italy) shows that the models can provide quite different results in terms of estimated return periods of historic droughts, although they seem to perform more uniformly when it comes to simulate drought-related statistics such as drought length, severity and intensity. The role of parameter selection for the multisite Markov mixture model and of the marginal probability of generated flows in providing results consistent with the characteristics of the observed series is discussed. Both models are applied to the system of sources supplying the city of Palermo (Sicily) and its environs showing the applicability of the newly developed multisite Markov mixture model to medium-to-large scale water resources systems.
The aim of this work is to define a methodology to identify the optimal rainfall return period for the design of urban drainage systems. The choice of the optimal return period is made minimizing the total costs of the system: the sewer network is dimensioned for a set of possible design rainfall return periods, and the corresponding construction, maintenance and operation costs are evaluated. For each scenario, the total expected damage from flooding caused by rainfall events with return period greater than the design one is then estimated by hydraulic simulation. This methodology has been applied to a small urban catchment in Palermo (Italy).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.