The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data.
The physiological role and transcriptional expression of Rhizobium etli sigma factors rpoH1 and rpoH2 are reported in this work. Both rpoH1 and rpoH2 were able to complement the temperature-sensitive phenotype of an Escherichia coli rpoH mutant. The R. etli rpoH1 mutant was sensitive to heat shock, sodium hypochlorite and hydrogen peroxide, whereas the rpoH2 mutant was sensitive to NaCl and sucrose. The rpoH2 rpoH1 double mutant had increased sensitivity to heat shock and oxidative stress when compared with the rpoH1 single mutant. This suggests that in R. etli, RpoH1 is the main heat-shock sigma factor, but a more complete protective response could be achieved with the participation of RpoH2. Conversely, RpoH2 is involved in osmotic tolerance. In symbiosis with bean plants, the R. etli rpoH1 and rpoH2 rpoH1 mutants still elicited nodule formation, but exhibited reduced nitrogenase activity and bacterial viability in early and late symbiosis compared with nodules produced by rpoH2 mutants and wild-type strains. In addition, nodules formed by R. etli rpoH1 and rpoH2 rpoH1 mutants showed premature senescence. It was also determined that fixNf and fixKf expression was affected in rpoH1 mutants. Both rpoH genes were induced under microaerobic conditions and in the stationary growth phase, but not in response to heat shock. Analysis of the upstream region of rpoH1 revealed a σ 70 and a probable σ E promoter, whereas in rpoH2, one probable σ E-dependent promoter was detected. In conclusion, the two RpoH proteins operate under different stress conditions, RpoH1 in heat-shock and oxidative responses, and RpoH2 in osmotic tolerance.
Cardiolipin (CL) is an anionic membrane lipid present in bacteria, plants, and animals, but absent from archaea. It is generally thought that bacteria use an enzyme belonging to the phospholipase D superfamily as cardiolipin synthase (Cls) catalyzing a reversible phosphatidyl group transfer from one phosphatidylglycerol (PG) molecule to another PG to form CL and glycerol. In contrast, in eukaryotes a Cls of the CDP-alcohol phosphatidyltransferase superfamily uses cytidine diphosphate-diacylglycerol (CDP-DAG) as the donor of the phosphatidyl group, which is transferred to a molecule of PG to form CL. Searching the genome of the actinomycete Streptomyces coelicolor A3(2) we identified a gene coding for a putative Cls of the CDP-alcohol phosphatidyltransferase superfamily (Sco1389). Here we show that expression of Sco1389 in a CL-deficient Rhizobium etli mutant restores CL formation. In an in vitro assay Sco1389 condenses CDP-DAG with PG to form CL and therefore catalyzes the same reaction as eukaryotic cardiolipin synthases. This is the first time that a CDP-alcohol phosphatidyltransferase from bacteria is shown to be responsible for CL formation. The broad occurrence of putative orthologues of Sco1389 among the actinobacteria suggests that CL synthesis involving a eukaryotic type Cls is common in actinobacteria.
Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.