Predicting the quality of the robot end-effector grasp quality during an industrial robot manipulator operation can be an extremely complex task. As is often the case with such complex tasks, Artificial Intelligence methods may be applied to attempt the creation of a model -if sufficient data exists. The presented dataset uses a publicly available dataset, consisting of 992632 measurements of position, torque, and velocity -for each of the three joints of three fingers of the simulated end-effector. The dataset is first analyzed and pre-processed to prepare it for model training. The duplicate values are removed from the dataset, as well as the statistical outliers. Then, a multilayer perceptron (MLP) machine learning algorithm is applied to 80% of the data contained in the dataset, using the Grid Search algorithm to determine the best combination of MLP hyperparameters. As the dataset consists of torque, velocity, and speed measurements for separate joints and fingers of the tested end-effector the testing is performed to see if a subset of the inputs may be used to regress the robustness of the given grip. The normalization of the dataset is also applied, and its effect on the regression quality is tested. The results, evaluated with the coefficient of determination, show that while the best model is achieved using all the possible inputs, a satisfactory result can be obtained using only velocity and torque.The results also show that the normalization of the dataset improves the regression quality in all the observed cases.
This paper analyses the application of a genetic algorithm (GA) for the purpose of designing the control system with separately excited DC motor controlled according to the rotor angle. The presented research is based on the utilization of a mathematical model designed with separate electrical and mechanical sub-systems. Such an approach allows fine-tuning of PID controllers by using an evolutionary procedure, mainly GA. For purpose of PID tuning, the new fitness function which combines several step response parameters with the aim of forming a unique surface which is then minimized with a genetic algorithm. From the results, it can be seen that the elitism-based algorithm achieved better results compared to the eligibility-based selection. Such an algorithm achieved a fitness value of 0.999982 resulting in a steady-state error of 0.000584 rad. The obtained results indicate the possibility of applying a GA in the parameterization of the PID controller for DC motor control.
Determining the residuary resistance per unit weight of displacement is one of the key factors in the design of vessels. In this paper, the authors utilize two novel methods – Symbolic Regression (SR) and Gradient Boosted Trees (GBT) to achieve a model which can be used to calculate the value of residuary resistance per unit weight, of displacement from the longitudinal position of the center of buoyancy, prismatic coefficient, length-displacement ratio, beam-draught ratio, length-beam ratio, and Froude number. This data is given as results of 308 experiments provided as a part of a publicly available dataset. The results are evaluated using the coefficient of determination (R2) and Mean Absolute Percentage Error (MAPE). Pre-processing, in the shape of correlation analysis combined with variable elimination and variable scaling, is applied to the dataset. The results show that while both methods achieve regression results, the result of regression of SR is relatively poor in comparison to GBT. Both methods provide slightly poorer, but comparable results to previous research focussing on the use of “black-box” methods, such as neural networks. The elimination of variables does not show a high influence on the modeling performance in the presented case, while variable scaling does achieve better results compared to the models trained with the non-scaled dataset.
The importance of error detection is high, especially in modern manufacturing processes where assembly lines operate without direct supervision. Stopping the faulty operation in time can prevent damage to the assembly line. Public dataset is used, containing 15 classes, 2 types of faultless operation and 13 types of faults, with 463 force and torsion datapoints. Four different methods are used: Multilayer Perceptron (MLP) selected due to high classification performance, Support Vector Machines (SVM) commonly used for a low number of datapoints, Convolutional Neural Network (CNN) known for high performance in classification with matrix inputs and Siamese Neural Network (SNN) novel method with high performance in small datasets. Two classification tasks are performed-error detection and classification. Grid search is used for hyperparameter variation and F1 score as a metric, with a 10 fold cross-validation. Authors propose a hybrid system consisting of SNN for detection and CNN for fault classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.