The present work examines the synthesis of tricalcium aluminate (for use as a synthetic slag) from the non-saline dross produced in the manufacture of metallic aluminum in holding furnaces. Three types of input drosses were used with Al2O3 contents ranging from 58 to 82 wt %. Calcium aluminates were formed via the mechanical activation (reactive milling) of different mixtures of dross and calcium carbonate, sintering at 1300 °C. The variables affecting the process, especially the milling time and the Al2O3/CaO molar ratio, were studied. The final products were examined via X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The reactive milling time used was 5 h in a ball mill, for a ball/dross mass ratio of 6.5. For a molar relationship of 1:3 (Al2O3/CaO), sintered products with calcium aluminate contents of over 90% were obtained, in which tricalcium aluminate (C3A) was the majority compound (87%), followed by C12A7 (5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.