We recently reported the hemochromatosis-like phenotype observed in our Usf2 knockout mice. In these mice, as in murine models of hemochromatosis and patients with hereditary hemochromatosis, iron accumulates in parenchymal cells (in particular, liver and pancreas), whereas the reticuloendothelial system is spared from this iron loading. We suggested that this phenotypic trait could be attributed to the absence, in the Usf2 knockout mice, of a secreted liver-specific peptide, hepcidin. We conjectured that the reverse situation, namely overexpression of hepcidin, might result in phenotypic traits of iron deficiency. This question was addressed by generating transgenic mice expressing hepcidin under the control of the liver-specific transthyretin promoter. We found that the majority of the transgenic mice were born with a pale skin and died within a few hours after birth. These transgenic animals had decreased body iron levels and presented severe microcytic hypochromic anemia. So far, three mosaic transgenic animals have survived. They were unequivocally identified by physical features, including reduced body size, pallor, hairless and crumpled skin. These pleiotropic effects were found to be associated with erythrocyte abnormalities, with marked anisocytosis, poikylocytosis and hypochromia, which are features characteristic of iron-deficiency anemia. These results strongly support the proposed role of hepcidin as a putative iron-regulatory hormone. The animal models devoid of hepcidin (the Usf2 knockout mice) or overexpressing the peptide (the transgenic mice presented in this paper) represent valuable tools for investigating iron homeostasis in vivo and for deciphering the molecular mechanisms of hepcidin action.
USF is a helix-loop-helix transcription factor that, like Myc, recognizes the DNA binding motif CACGTG. Two different forms of USF, characterized by apparent molecular weights of 43,000 and 44,000, were originally identified in HeLa cells by biochemical analysis. Clones for the 43-kDa USF were first characterized, but only partial clones for the human 44-kDa USF (USF2, or FIP) have been reported. Here we describe a complete cDNA for the 44-kDa USF from murine cells. Analysis of this clone has revealed that the various USF family members are quite divergent in their N-terminal amino acid sequences, while a high degree of conservation characterizes their dimerization and DNA-binding domains. Interestingly, the 3' noncoding region of the 44-kDa USF cDNAs displayed an unusual degree of conservation between human and mouse. In vitro transcription/translation experiments indicated a possible role for this region in translation regulation. Alternative splicing forms of the 44-kDa USF messages exist in both mouse and human. Examination of the tissue and cell-type distribution of USF by Northern blot and gel retardation assays revealed that while expression of both the 43- and 44-kDa USF species is ubiquitous, different ratios of USF homo- and heterodimers are found in different cells.
USF1 and USF2 are ubiquitously expressed transcription factors implicated as antagonists of the c-Myc protooncoprotein in the control of cellular proliferation. To determine the biological role of the USF proteins, mutant mice were generated by homologous recombination in embryonic stem cells. USF1-null mice were viable and fertile, with only slight behavioral abnormalities. However, these mice contained elevated levels of USF2, which may compensate for the absence of USF1. In contrast, USF2-null mice contained reduced levels of USF1 and displayed an obvious growth defect: they were 20-40% smaller at birth than their wild-type or heterozygous littermates and maintained a smaller size with proportionate features throughout postnatal development. Some of the USF-deficient mice, especially among the females, were prone to spontaneous epileptic seizures, suggesting that USF is important in normal brain function. Among the double mutants, an embryonic lethal phenotype was observed for mice that were homozygous for the Usf2 mutation and either heterozygous or homozygous for the Usf1 mutation, demonstrating that the USF proteins are essential in embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.