Purpose: Malignant rhabdoid tumors (MRTs) are deadly embryonal tumors of the infancy. With poor survival and modest response to available therapies, more effective and less toxic treatments are needed. We hypothesized that a systematic screening of the kinome will reveal kinases that drive rhabdoid tumors and can be targeted by specific inhibitors.
Methods:We individually mutated 160 kinases in a well-characterized rhabdoid tumor cell line (MON) using lentiviral clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The kinase that most significantly impaired cell growth was further validated. Its expression was evaluated by microarray gene expression (GE) within 111 pediatric tumors, and functional assays were performed. A small molecule inhibitor was tested in multiple rhabdoid tumor cell lines and its toxicity evaluated in zebrafish larvae.
Results:The Polo-like kinase 4 (PLK4) was identified as the kinase that resulted in higher impairment of cell proliferation when mutated by CRISPR/Cas9. PLK4 CRISPR-mutated rhabdoid cells demonstrated significant decrease in proliferation, viability, and survival. GE showed upregulation of PLK4 in rhabdoid tumors and other embryonal tumors of the brain. The PLK4 inhibitor CFI-400945 showed cytotoxic effects on rhabdoid tumor cell lines while sparing non-neoplastic human fibroblasts and developing zebrafish larvae.
Conclusions:Our findings indicate that rhabdoid tumor cell proliferation is highly dependent on PLK4 and suggest that targeting PLK4 with small-molecule inhibitors may hold a novel strategy for the treatment of MRT and possibly other embryonal tumors of the brain. This is the first time that PLK4 has been described as a potential target for both brain and pediatric tumors.
The P-LGG, which remained stable or that presented spontaneous involution after STR, showed significantly higher CNR1 expression at the time of diagnosis. We hypothesize that high expression levels of CNR1 provide tumor susceptibility to the antitumor effects of circulating endocannabinoids like anandamide, resulting in tumor involution. This corroborates with reports suggesting that CNR1 agonists and activators of the endocannabinoid system may represent therapeutic opportunities for children with LGG. We also suggest that CNR1 may be a prognostic marker for P-LGG. This is the first time spontaneous involution of P-LGG has been suggested to be induced by endocannabinoids.
Glioblastoma (GBM) is pathologically characterized by highly malignant neoplastic cells, focal necrosis and aberrant blood vessels composed of disorganized endothelial cells and pericytes. The recent cancer microarray database revealed upregulation of fibulin‐7 (Fbln7), a member of the fibulin family, but provided no information on the tissue localization or biological function. In the present study, we demonstrated that Fbln7 is markedly overexpressed by the GBM tissue among astrocytic tumors, and immunolocalized mainly to endothelial cells and pericytes of the glomeruloid and hypertrophied microvessels. The production of Fbln7 by endothelial cells and pericytes was confirmed in cultured human umbilical vein endothelial cells (HUVEC) and human brain vascular pericytes (HBVP) and vascular endothelial growth factor (VEGF) stimulated the Fbln7 expression in HUVEC. Fbln7 bound to angiopoietin‐1, but not angiopoietin‐2 or Tie2 receptor, through interaction between the N‐terminal portions of Fbln7 and angiopoietin‐1, and it blocked phosphorylation of Tie2 receptor in HUVEC. In a coculture assay using HUVEC and HBVP, multilayered and irregular‐shaped tube‐like structures of HUVEC were induced by treatment with a high concentration of VEGF. This was accompanied by Fbln7 overproduction by HUVEC and angiopoietin‐1 expression by HBVP. The production of aberrant VEGF‐induced tube‐like structures was attenuated by treatment with antibody or synthetic peptides specific to the Fbln7 N‐terminal domain or knockdown of Fbln7. These data demonstrate that Fbln7 is overexpressed by endothelial cells and pericytes of the abnormal microvessels in GBM, and suggest that Fbln7 may contribute to the aberrant vessel formation by modulation of the angiopoietin‐1/angiopoietin‐2‐Tie2 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.