Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range, and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold, and yield orthogonal sets of up to 15 devices. Automated forward engineering is used to improve toehold repressor dynamic range and SHAPE-Seq is applied to confirm the designed switching mechanism of 3WJ repressors in living cells. We integrate the modular repressors into biological circuits that execute universal NAND and NOR logic and evaluate the four-input expression NOT ((A1 AND A2) OR (B1 AND B2)) in Escherichia coli. These capabilities make toehold and 3WJ repressors valuable new tools for biotechnological applications.
Colocalization can strongly alter the kinetics and efficiency of chemical processes. For instance, in DNA-templated synthesis unfavorable reactions are sped up by placing reactants into close proximity onto a DNA scaffold. In biochemistry, clustering of enzymes has been demonstrated to enhance the reaction flux through some enzymatic cascades. Here we investigate the effect of colocalization on the performance of DNA strand displacement (DSD) reactions, an important class of reactions utilized in dynamic DNA nanotechnology. We study colocalization by immobilizing a two-stage DSD reaction cascade comprised of a “sender” and a “receiver” gate onto a DNA origami platform. The addition of a DNA (or RNA) input strand displaces a signal strand from the sender gate, which can then transfer to the receiver gate. The performance of the cascade is found to vary strongly with the distance between the gates. A cascade with an intermediate gate distance of ≈20 nm exhibits faster kinetics than those with larger distances, whereas a cascade with smaller distance is corrupted by excessive intraorigami leak reactions. The 20 nm cascade is found to be considerably more robust with respect to a competing reaction, and implementation of multiple receiver gates further increases this robustness. Our results indicate that for the 20 nm distance a fraction of signal strands is transferred locally to a receiver gate on the same platform, probably involving direct physical contact between the gates. The performance of the cascade is consistent with a simple model that takes “local” and “global” transfer processes into account.
Synthetic biology aims to apply engineering principles toward the development of novel biological systems for biotechnology and medicine. Despite efforts to expand the set of highperforming parts for genetic circuits, achieving more complex circuit functions has often been limited by the idiosyncratic nature and crosstalk of commonly utilized parts. Here, we present a molecular programming strategy that implements RNA-based repression of translation using de-novo-designed RNAs to realize high-performance orthogonal parts with mRNA detection and multi-input logic capabilities. These synthetic post-transcriptional regulators, termed toehold repressors and three-way junction (3WJ) repressors, efficiently suppress translation in response to cognate trigger RNAs with nearly arbitrary sequences using thermodynamically and kinetically favorable linear-linear RNA interactions. Automated in silico optimization of thermodynamic parameters yields improved toehold repressors with up to 300-fold repression, while in-cell SHAPE-Seq measurements of 3WJ repressors confirm their designed switching mechanism in living cells. Leveraging the absence of sequence constraints, we identify eightand 15-component sets of toehold and 3WJ repressors, respectively, that provide high orthogonality. The modularity, wide dynamic range, and low crosstalk of the repressors enable their direct integration into ribocomputing devices that provide universal NAND and NOR logic capabilities and can perform multi-input RNA-based logic. We demonstrate these capabilities by implementing a four-input NAND gate and the expression NOT((A1 AND A2) OR (B1 AND B2)) in Escherichia coli. These features make toehold and 3WJ repressors important new classes of translational regulators for biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.