We propose an extension of the numerical approach for integrable Richardson-Gaudin models based on a new set of eigenvalue-based variables [A. Faribault et al., Phys. Rev. B 83, 235124 (2011); O. El Araby et al., ibid. 85, 115130 (2012)]. Starting solely from the Gaudin algebra, the approach is generalized towards the full class of XXZ Richardson-Gaudin models. This allows for a fast and robust numerical determination of the spectral properties of these models, avoiding the singularities usually arising at the so-called singular points. We also provide different determinant expressions for the normalization of the Bethe ansatz states and form factors of local spin operators, opening up possibilities for the study of larger systems, both integrable and nonintegrable. Remarkably, these results are independent of the explicit parametrization of the Gaudin algebra, exposing a universality in the properties of Richardson-Gaudin integrable systems deeply linked to the underlying algebraic structure.
We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.
Recently, interest has increased in the hyperbolic family of integrable Richardson-Gaudin (RG) models. It was pointed out that a particular linear combination of the integrals of motion of the hyperbolic RG model leads to a Hamiltonian that describes p-wave pairing in a two-dimensional system. Such an interaction is found to be present in fermionic superfluids ( 3 He), ultracold atomic gases, and p-wave superconductivity. Furthermore the phase diagram is intriguing, with the presence of the Moore-Read and Read-Green lines. At the Read-Green line a rare third-order quantum phase transition occurs. The present paper makes a connection between collective bosonic states and the exact solutions of the p x + ip y pairing Hamiltonian. This makes it possible to investigate the effects of the Pauli principle on the energy spectrum, by gradually reintroducing the Pauli principle. It also introduces an efficient and stable numerical method to probe all the eigenstates of this class of Hamiltonians. We extend the phase diagram to repulsive interactions, an area that was not previously explored due to the lack of a proper mean-field solution in this region. We found a connection between the point in the phase diagram where the ground state connects to the bosonic state with the highest collectivity, and the Moore-Read line where all the Richardson-Gaudin (RG) variables collapse to zero. In contrast with the reduced BCS case, the overlap between the ground state and the highest collective state at the Moore-Read line is not the largest. In fact it shows a minimum when most other bosonic states show a maximum of the overlap. We found remnants of the Read-Green line for finite systems, by investigating the total spectrum. A symmetry was found between the Hamiltonian with and without single-particle part. When the interaction was repulsive we found four different classes of trajectories of the RG variables.
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.
A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation. C 2015 AIP Publishing LLC. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.