In this paper we demonstrate a non-destructive, non-contact detection method for small defects in thin polymer plates using an air coupled ultrasonic (ACUS) setup. There exist many applications for such methods, e.g. quality control in the manufacturing process or failure prevention by periodical inspections during the lifetime of a product. We demonstrate a setup for the inspection of plates together with signal analysis algorithms to process the measured data, meeting the challenges to handle the dispersive signals and establishing a robust failure criterion. Pressure waves from the transmitter excite different modes of Lamb waves inside the plate. These Lamb waves propagate in the plate and reradiate pressure waves into the air that are then detected by the receiver. Lamb mode conversion is used for defect detection. A numerical model allows the visualization of the propagating waves in the air as well as the Lamb waves inside the plate.Four key parameters of the setup are identified, two angles and two distances. The transmitter and the receiver angles are used to select which Lamb mode (anti-symmetric A 0 or symmetric S 0 ) is mainly excited and detected, respectively. For the acquisition of the Lamb wave signal the distance from the transmitter to the receiver should be as large as possible but is limited by the attenuation of the signal. Measurements for different values of this distance are essential for signal analysis. The distance between transducer and plate surface should be as small as possible even if it may introduce secondary Lamb waves due to reflections of the pressure wave between transmitter and plate surface. Two algorithms, a model based one and a data driven one, are presented to separate Lamb modes that overlap in time. In these separated signals, the Lamb mode conversion from A 0 to S 0 is shown, allowing a localization of the defect. We conclude that defect detection and localization with Lamb mode conversion is possible with an air coupled ultrasonic setup. Multiple measurements along the propagation direction of the Lamb waves are necessary to allow a thorough signal analysis and visualize the mode conversion.
We present a decomposition of the temporal growth rate ω i which characterises the evolution of wave-like disturbances in linear stability theory for compressible flows. The decomposition is based on the disturbance energy balance by Chu (Acta Mech., vol. 1 (3), 1965, pp. 215-234) and provides terms for production, dissipation and flux of energy as components of ω i . The inclusion of flux terms makes our formulation applicable to unconfined flows and flows with permeable or vibrating boundaries. The decomposition sheds light on the fundamental mechanisms determining temporal growth or decay of disturbances. The additional insights gained by the proposed approach are demonstrated by an investigation of two model flows, namely compressible Couette flow and a plane compressible jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.