This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial.
This paper proposes a novel approach to light plane labeling in depthimage sensors relying on "uncoded" structured light. The proposed approach adopts probabilistic graphical models (PGMs) to solve the correspondence problem between the projected and the detected light patterns. The procedure for solving the correspondence problem is designed to take the spatial relations between the parts of the projected pattern and prior knowledge about the structure of the pattern into account, but it also exploits temporal information to achieve reliable light-plane labeling. The procedure is assessed on a database of light patterns detected with a specially developed imaging sensor that, unlike most existing solutions on the market, was shown to work reliably in outdoor environments as well as in the presence of other identical (active) sensors directed at the same scene. The results of our experiments show that the proposed approach is able to reliably solve the correspondence problem and assign light-plane labels to the detected pattern with a high accuracy, even when large spatial discontinuities are present in the observed scene.
Finite‐state transducers are frequently used for pronunciation lexicon representations in speech engines, in which memory and processing resources are scarce. This paper proposes two possibilities for further reducing the memory footprint of finite‐state transducers representing pronunciation lexicons. First, different alignments of grapheme and allophone transcriptions are studied and a reduction in the number of states of up to 30% is reported. Second, a combination of grapheme‐to‐allophone rules with a finite‐state transducer is proposed, which yields a 65% smaller finite‐state transducer than conventional approaches
BackgroundImage cytometry can measure numerous nuclear features which could be considered a surrogate end-point marker of molecular genetic changes in a nucleus. The aim of the study was to analyze image cytometric nuclear features in paired samples of primary tumor and neck metastasis in patients with inoperable carcinoma of the head and neck.Materials and methods.Image cytometric analysis of cell suspensions prepared from primary tumor tissue and fine needle aspiration biopsy cell samples of neck metastases from 21 patients treated with concomitant radiochemotherapy was performed. Nuclear features were correlated with clinical characteristics and response to therapy.ResultsManifestation of distant metastases and new primaries was associated (p<0.05) with several chromatin characteristics from primary tumor cells, whereas the origin of index cancer and disease response in the neck was related to those in the cells from metastases. Many nuclear features of primary tumors and metastases correlated with the TNM stage.ConclusionsA specific pattern of correlation between well-established prognostic indicators and nuclear features of samples from primary tumors and those from neck metastases was observed. Image cytometric nuclear features represent a promising candidate marker for recognition of biologically different tumor subgroups.
This paper presents a method for selecting speech units for polyphone concatenative speech synthesis, in which the simplification of procedures for search paths in a graph has accelerated the speed of the unit-selection procedure with minimum effects on the speech quality. The speech units selected are still optimal; only the costs of merging the units on which the selection is based are less accurately determined. Due to its low processing power and memory footprint requirements, the method is suitable for use in embedded speech synthesizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.