Human CMV has evolved multiple strategies to interfere with immune recognition of the host. A variety of mechanisms target Ag presentation by MHC class I molecules resulting in a reduced class I cell-surface expression. This down-regulation of class I molecules is expected to trigger NK cytotoxicity, which would have to be counteracted by the virus to establish long-term infection. Here we describe that the human CMV open reading frame UL40 encodes a canonical ligand for HLA-E, identical with the HLA-Cw03 signal sequence-derived peptide. Expression of UL40 in HLA-E-positive target cells conferred resistance to NK cell lysis via the CD94/NKG2A receptor. Generation of the UL40-derived HLA-E ligand was also observed in TAP-deficient cells. The presence of a functional TAP-independent HLA-E ligand in the UL40 signal sequence implicates this viral gene as an important negative regulator of NK activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.